Advancedahocorasick

package ahocorasick

import (
	"fmt"
	"time"
)

// Advanced Function performing the Advanced Aho-Corasick algorithm.
// Finds and prints occurrences of each pattern.
func Advanced(t string, p []string) Result {
	startTime := time.Now()
	occurrences := make(map[int][]int)
	ac, f := BuildExtendedAc(p)
	current := 0
	for pos := 0; pos < len(t); pos++ {
		if GetTransition(current, t[pos], ac) != -1 {
			current = GetTransition(current, t[pos], ac)
		} else {
			current = 0
		}
		_, ok := f[current]
		if ok {
			for i := range f[current] {
				if p[f[current][i]] == GetWord(pos-len(p[f[current][i]])+1, pos, t) { //check for word match
					newOccurrences := IntArrayCapUp(occurrences[f[current][i]])
					occurrences[f[current][i]] = newOccurrences
					occurrences[f[current][i]][len(newOccurrences)-1] = pos - len(p[f[current][i]]) + 1
				}
			}
		}
	}
	elapsed := time.Since(startTime)
	fmt.Printf("\n\nElapsed %f secs\n", elapsed.Seconds())

	var resultOccurrences = make(map[string][]int)
	for key, value := range occurrences {
		resultOccurrences[p[key]] = value
	}

	return Result{
		resultOccurrences,
	}
}

// BuildExtendedAc Functions that builds extended Aho Corasick automaton.
func BuildExtendedAc(p []string) (acToReturn map[int]map[uint8]int, f map[int][]int) {
	acTrie, stateIsTerminal, f := ConstructTrie(p)
	s := make([]int, len(stateIsTerminal)) //supply function
	i := 0                                 //root of acTrie
	acToReturn = acTrie
	s[i] = -1
	for current := 1; current < len(stateIsTerminal); current++ {
		o, parent := GetParent(current, acTrie)
		down := s[parent]
		for StateExists(down, acToReturn) && GetTransition(down, o, acToReturn) == -1 {
			down = s[down]
		}
		if StateExists(down, acToReturn) {
			s[current] = GetTransition(down, o, acToReturn)
			if stateIsTerminal[s[current]] {
				stateIsTerminal[current] = true
				f[current] = ArrayUnion(f[current], f[s[current]]) //F(Current) <- F(Current) union F(S(Current))
			}
		} else {
			s[current] = i //initial state?
		}
	}
	a := ComputeAlphabet(p) // concat of all patterns in p
	for j := range a {
		if GetTransition(i, a[j], acToReturn) == -1 {
			CreateTransition(i, a[j], i, acToReturn)
		}
	}
	for current := 1; current < len(stateIsTerminal); current++ {
		for j := range a {
			if GetTransition(current, a[j], acToReturn) == -1 {
				CreateTransition(current, a[j], GetTransition(s[current], a[j], acToReturn), acToReturn)
			}
		}
	}
	return acToReturn, f
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.