B Tree

use std::convert::TryFrom;
use std::fmt::Debug;
use std::mem;

struct Node<T> {
    keys: Vec<T>,
    children: Vec<Node<T>>,
}

pub struct BTree<T> {
    root: Node<T>,
    props: BTreeProps,
}

// Why to need a different Struct for props...
// Check - http://smallcultfollowing.com/babysteps/blog/2018/11/01/after-nll-interprocedural-conflicts/#fnref:improvement
struct BTreeProps {
    degree: usize,
    max_keys: usize,
    mid_key_index: usize,
}

impl<T> Node<T>
where
    T: Ord,
{
    fn new(degree: usize, _keys: Option<Vec<T>>, _children: Option<Vec<Node<T>>>) -> Self {
        Node {
            keys: match _keys {
                Some(_keys) => _keys,
                None => Vec::with_capacity(degree - 1),
            },
            children: match _children {
                Some(_children) => _children,
                None => Vec::with_capacity(degree),
            },
        }
    }

    fn is_leaf(&self) -> bool {
        self.children.is_empty()
    }
}

impl BTreeProps {
    fn new(degree: usize) -> Self {
        BTreeProps {
            degree,
            max_keys: degree - 1,
            mid_key_index: (degree - 1) / 2,
        }
    }

    fn is_maxed_out<T: Ord + Copy>(&self, node: &Node<T>) -> bool {
        node.keys.len() == self.max_keys
    }

    // Split Child expects the Child Node to be full
    /// Move the middle_key to parent node and split the child_node's
    /// keys/chilren_nodes into half
    fn split_child<T: Ord + Copy + Default>(&self, parent: &mut Node<T>, child_index: usize) {
        let child = &mut parent.children[child_index];
        let middle_key = child.keys[self.mid_key_index];
        let right_keys = match child.keys.split_off(self.mid_key_index).split_first() {
            Some((_first, _others)) => {
                // We don't need _first, as it will move to parent node.
                _others.to_vec()
            }
            None => Vec::with_capacity(self.max_keys),
        };
        let right_children = if !child.is_leaf() {
            Some(child.children.split_off(self.mid_key_index + 1))
        } else {
            None
        };
        let new_child_node: Node<T> = Node::new(self.degree, Some(right_keys), right_children);

        parent.keys.insert(child_index, middle_key);
        parent.children.insert(child_index + 1, new_child_node);
    }

    fn insert_non_full<T: Ord + Copy + Default>(&mut self, node: &mut Node<T>, key: T) {
        let mut index: isize = isize::try_from(node.keys.len()).ok().unwrap() - 1;
        while index >= 0 && node.keys[index as usize] >= key {
            index -= 1;
        }

        let mut u_index: usize = usize::try_from(index + 1).ok().unwrap();
        if node.is_leaf() {
            // Just insert it, as we know this method will be called only when node is not full
            node.keys.insert(u_index, key);
        } else {
            if self.is_maxed_out(&node.children[u_index]) {
                self.split_child(node, u_index);
                if node.keys[u_index] < key {
                    u_index += 1;
                }
            }

            self.insert_non_full(&mut node.children[u_index], key);
        }
    }

    fn traverse_node<T: Ord + Debug>(&self, node: &Node<T>, depth: usize) {
        if node.is_leaf() {
            print!(" {0:{<1$}{2:?}{0:}<1$} ", "", depth, node.keys);
        } else {
            let _depth = depth + 1;
            for (index, key) in node.keys.iter().enumerate() {
                self.traverse_node(&node.children[index], _depth);
                // Check https://doc.rust-lang.org/std/fmt/index.html
                // And https://stackoverflow.com/a/35280799/2849127
                print!("{0:{<1$}{2:?}{0:}<1$}", "", depth, key);
            }
            self.traverse_node(node.children.last().unwrap(), _depth);
        }
    }
}

impl<T> BTree<T>
where
    T: Ord + Copy + Debug + Default,
{
    pub fn new(branch_factor: usize) -> Self {
        let degree = 2 * branch_factor;
        BTree {
            root: Node::new(degree, None, None),
            props: BTreeProps::new(degree),
        }
    }

    pub fn insert(&mut self, key: T) {
        if self.props.is_maxed_out(&self.root) {
            // Create an empty root and split the old root...
            let mut new_root = Node::new(self.props.degree, None, None);
            mem::swap(&mut new_root, &mut self.root);
            self.root.children.insert(0, new_root);
            self.props.split_child(&mut self.root, 0);
        }
        self.props.insert_non_full(&mut self.root, key);
    }

    pub fn traverse(&self) {
        self.props.traverse_node(&self.root, 0);
        println!();
    }

    pub fn search(&self, key: T) -> bool {
        let mut current_node = &self.root;
        let mut index: isize;
        loop {
            index = isize::try_from(current_node.keys.len()).ok().unwrap() - 1;
            while index >= 0 && current_node.keys[index as usize] > key {
                index -= 1;
            }

            let u_index: usize = usize::try_from(index + 1).ok().unwrap();
            if index >= 0 && current_node.keys[u_index - 1] == key {
                break true;
            } else if current_node.is_leaf() {
                break false;
            } else {
                current_node = &current_node.children[u_index];
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::BTree;

    #[test]
    fn test_search() {
        let mut tree = BTree::new(2);
        tree.insert(10);
        tree.insert(20);
        tree.insert(30);
        tree.insert(5);
        tree.insert(6);
        tree.insert(7);
        tree.insert(11);
        tree.insert(12);
        tree.insert(15);
        assert!(tree.search(15));
        assert_eq!(tree.search(16), false);
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.