Baby Step Giant Step

/// Baby-step Giant-step algorithm
///
/// Solving discrete logarithm problem:
///     a^x = b (mod n) , with respect to gcd(a, n) == 1
/// with O(sqrt(n)) time complexity.
///
/// Wikipedia reference: https://en.wikipedia.org/wiki/Baby-step_giant-step
/// When a is the primitive root modulo n, the answer is unique.
/// Otherwise it will return the smallest positive solution
use std::collections::HashMap;

pub fn baby_step_giant_step(a: usize, b: usize, n: usize) -> Option<usize> {
    if b == 1 {
        return Some(n);
    }

    let mut h_map = HashMap::new();
    let m = (n as f64).sqrt().ceil() as usize;
    // baby step
    let mut step = 1;
    for i in 0..m {
        h_map.insert((step * b) % n, i);
        step = (step * a) % n;
    }
    // Now step = a^m (mod n), giant step
    let giant_step = step;
    for i in (m..=n).step_by(m) {
        if let Some(v) = h_map.get(&step) {
            return Some(i - v);
        }
        step = (step * giant_step) % n;
    }
    None
}

#[cfg(test)]
mod tests {
    use super::baby_step_giant_step;

    #[test]
    fn small_numbers() {
        assert_eq!(baby_step_giant_step(5, 3, 11), Some(2));
        assert_eq!(baby_step_giant_step(3, 83, 100), Some(9));
    }

    #[test]
    fn primitive_root_tests() {
        assert_eq!(
            baby_step_giant_step(3, 311401496, 998244353),
            Some(178105253)
        );
        assert_eq!(
            baby_step_giant_step(5, 324637211, 1000000007),
            Some(976653449)
        );
    }

    #[test]
    fn random_numbers() {
        assert_eq!(baby_step_giant_step(174857, 48604, 150991), Some(177));
        assert_eq!(baby_step_giant_step(912103, 53821, 75401), Some(2644));
        assert_eq!(baby_step_giant_step(448447, 365819, 671851), Some(23242));
        assert_eq!(
            baby_step_giant_step(220757103, 92430653, 434948279),
            Some(862704)
        );
        assert_eq!(
            baby_step_giant_step(176908456, 23538399, 142357679),
            Some(14215560)
        );
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.