Basic Binary Tree

from __future__ import annotations


class Node:
    """
    A Node has data variable and pointers to Nodes to its left and right.
    """

    def __init__(self, data: int) -> None:
        self.data = data
        self.left: Node | None = None
        self.right: Node | None = None


def display(tree: Node | None) -> None:  # In Order traversal of the tree
    """
    >>> root = Node(1)
    >>> root.left = Node(0)
    >>> root.right = Node(2)
    >>> display(root)
    0
    1
    2
    >>> display(root.right)
    2
    """
    if tree:
        display(tree.left)
        print(tree.data)
        display(tree.right)


def depth_of_tree(tree: Node | None) -> int:
    """
    Recursive function that returns the depth of a binary tree.

    >>> root = Node(0)
    >>> depth_of_tree(root)
    1
    >>> root.left = Node(0)
    >>> depth_of_tree(root)
    2
    >>> root.right = Node(0)
    >>> depth_of_tree(root)
    2
    >>> root.left.right = Node(0)
    >>> depth_of_tree(root)
    3
    >>> depth_of_tree(root.left)
    2
    """
    return 1 + max(depth_of_tree(tree.left), depth_of_tree(tree.right)) if tree else 0


def is_full_binary_tree(tree: Node) -> bool:
    """
    Returns True if this is a full binary tree

    >>> root = Node(0)
    >>> is_full_binary_tree(root)
    True
    >>> root.left = Node(0)
    >>> is_full_binary_tree(root)
    False
    >>> root.right = Node(0)
    >>> is_full_binary_tree(root)
    True
    >>> root.left.left = Node(0)
    >>> is_full_binary_tree(root)
    False
    >>> root.right.right = Node(0)
    >>> is_full_binary_tree(root)
    False
    """
    if not tree:
        return True
    if tree.left and tree.right:
        return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right)
    else:
        return not tree.left and not tree.right


def main() -> None:  # Main function for testing.
    tree = Node(1)
    tree.left = Node(2)
    tree.right = Node(3)
    tree.left.left = Node(4)
    tree.left.right = Node(5)
    tree.left.right.left = Node(6)
    tree.right.left = Node(7)
    tree.right.left.left = Node(8)
    tree.right.left.left.right = Node(9)

    print(is_full_binary_tree(tree))
    print(depth_of_tree(tree))
    print("Tree is: ")
    display(tree)


if __name__ == "__main__":
    main()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.