Bidirectional Dijkstra

/**
 * @file
 * @brief [Bidirectional Dijkstra Shortest Path Algorithm]
 * (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra)
 *
 * @author [Marinovksy](http://github.com/Marinovsky)
 *
 * @details
 * This is basically the same Dijkstra Algorithm but faster because it goes from
 * the source to the target and from target to the source and stops when
 * finding a vertex visited already by the direct search or the reverse one.
 * Here some simulations of it:
 * https://www.youtube.com/watch?v=DINCL5cd_w0&t=24s
 */

#include <cassert>   /// for assert
#include <iostream>  /// for io operations
#include <limits>    /// for variable INF
#include <queue>     /// for the priority_queue of distances
#include <utility>   /// for make_pair function
#include <vector>    /// for store the graph, the distances, and the path

constexpr int64_t INF = std::numeric_limits<int64_t>::max();

/**
 * @namespace graph
 * @brief Graph Algorithms
 */
namespace graph {
/**
 * @namespace bidirectional_dijkstra
 * @brief Functions for [Bidirectional Dijkstra Shortest Path]
 * (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra)
 * algorithm
 */
namespace bidirectional_dijkstra {
/**
 * @brief Function that add edge between two nodes or vertices of graph
 *
 * @param adj1 adjacency list for the direct search
 * @param adj2 adjacency list for the reverse search
 * @param u any node or vertex of graph
 * @param v any node or vertex of graph
 */
void addEdge(std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj1,
             std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj2,
             uint64_t u, uint64_t v, uint64_t w) {
    (*adj1)[u - 1].push_back(std::make_pair(v - 1, w));
    (*adj2)[v - 1].push_back(std::make_pair(u - 1, w));
    // (*adj)[v - 1].push_back(std::make_pair(u - 1, w));
}
/**
 * @brief This function returns the shortest distance from the source
 * to the target if there is path between vertices 's' and 't'.
 *
 * @param workset_ vertices visited in the search
 * @param distance_ vector of distances from the source to the target and
 * from the target to the source
 *
 */
uint64_t Shortest_Path_Distance(
    const std::vector<uint64_t> &workset_,
    const std::vector<std::vector<uint64_t>> &distance_) {
    int64_t distance = INF;
    for (uint64_t i : workset_) {
        if (distance_[0][i] + distance_[1][i] < distance) {
            distance = distance_[0][i] + distance_[1][i];
        }
    }
    return distance;
}

/**
 * @brief Function runs the dijkstra algorithm for some source vertex and
 * target vertex in the graph and returns the shortest distance of target
 * from the source.
 *
 * @param adj1 input graph
 * @param adj2 input graph reversed
 * @param s source vertex
 * @param t target vertex
 *
 * @return shortest distance if target is reachable from source else -1 in
 * case if target is not reachable from source.
 */
int Bidijkstra(std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj1,
               std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj2,
               uint64_t s, uint64_t t) {
    /// n denotes the number of vertices in graph
    uint64_t n = adj1->size();

    /// setting all the distances initially to INF
    std::vector<std::vector<uint64_t>> dist(2, std::vector<uint64_t>(n, INF));

    /// creating a a vector of min heap using priority queue
    /// pq[0] contains the min heap for the direct search
    /// pq[1] contains the min heap for the reverse search

    /// first element of pair contains the distance
    /// second element of pair contains the vertex
    std::vector<
        std::priority_queue<std::pair<uint64_t, uint64_t>,
                            std::vector<std::pair<uint64_t, uint64_t>>,
                            std::greater<std::pair<uint64_t, uint64_t>>>>
        pq(2);
    /// vector for store the nodes or vertices in the shortest path
    std::vector<uint64_t> workset(n);
    /// vector for store the nodes or vertices visited
    std::vector<bool> visited(n);

    /// pushing the source vertex 's' with 0 distance in pq[0] min heap
    pq[0].push(std::make_pair(0, s));

    /// marking the distance of source as 0
    dist[0][s] = 0;

    /// pushing the target vertex 't' with 0 distance in pq[1] min heap
    pq[1].push(std::make_pair(0, t));

    /// marking the distance of target as 0
    dist[1][t] = 0;

    while (true) {
        /// direct search

        // If pq[0].size() is equal to zero then the node/ vertex is not
        // reachable from s
        if (pq[0].size() == 0) {
            break;
        }
        /// second element of pair denotes the node / vertex
        uint64_t currentNode = pq[0].top().second;

        /// first element of pair denotes the distance
        uint64_t currentDist = pq[0].top().first;

        pq[0].pop();

        /// for all the reachable vertex from the currently exploring vertex
        /// we will try to minimize the distance
        for (std::pair<int, int> edge : (*adj1)[currentNode]) {
            /// minimizing distances
            if (currentDist + edge.second < dist[0][edge.first]) {
                dist[0][edge.first] = currentDist + edge.second;
                pq[0].push(std::make_pair(dist[0][edge.first], edge.first));
            }
        }
        // store the processed node/ vertex
        workset.push_back(currentNode);

        /// check if currentNode has already been visited
        if (visited[currentNode] == 1) {
            return Shortest_Path_Distance(workset, dist);
        }
        visited[currentNode] = true;
        /// reversed search

        // If pq[1].size() is equal to zero then the node/ vertex is not
        // reachable from t
        if (pq[1].size() == 0) {
            break;
        }
        /// second element of pair denotes the node / vertex
        currentNode = pq[1].top().second;

        /// first element of pair denotes the distance
        currentDist = pq[1].top().first;

        pq[1].pop();

        /// for all the reachable vertex from the currently exploring vertex
        /// we will try to minimize the distance
        for (std::pair<int, int> edge : (*adj2)[currentNode]) {
            /// minimizing distances
            if (currentDist + edge.second < dist[1][edge.first]) {
                dist[1][edge.first] = currentDist + edge.second;
                pq[1].push(std::make_pair(dist[1][edge.first], edge.first));
            }
        }
        // store the processed node/ vertex
        workset.push_back(currentNode);

        /// check if currentNode has already been visited
        if (visited[currentNode] == 1) {
            return Shortest_Path_Distance(workset, dist);
        }
        visited[currentNode] = true;
    }
    return -1;
}
}  // namespace bidirectional_dijkstra
}  // namespace graph

/**
 * @brief Function to test the
 * provided algorithm above
 * @returns void
 */
static void tests() {
    std::cout << "Initiatinig Predefined Tests..." << std::endl;
    std::cout << "Initiating Test 1..." << std::endl;
    std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1_1(
        4, std::vector<std::pair<uint64_t, uint64_t>>());
    std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1_2(
        4, std::vector<std::pair<uint64_t, uint64_t>>());
    graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 2, 1);
    graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 4, 1, 2);
    graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 2, 3, 2);
    graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 3, 5);

    uint64_t s = 1, t = 3;
    assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1,
                                                     t - 1) == 3);
    std::cout << "Test 1 Passed..." << std::endl;

    s = 4, t = 3;
    std::cout << "Initiating Test 2..." << std::endl;
    assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1,
                                                     t - 1) == 5);
    std::cout << "Test 2 Passed..." << std::endl;

    std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2_1(
        5, std::vector<std::pair<uint64_t, uint64_t>>());
    std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2_2(
        5, std::vector<std::pair<uint64_t, uint64_t>>());
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 2, 4);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 3, 2);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 3, 2);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 2, 1);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 4, 2);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 5, 4);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 5, 4, 1);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 5, 3);
    graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 4, 4);

    s = 1, t = 5;
    std::cout << "Initiating Test 3..." << std::endl;
    assert(graph::bidirectional_dijkstra::Bidijkstra(&adj2_1, &adj2_2, s - 1,
                                                     t - 1) == 6);
    std::cout << "Test 3 Passed..." << std::endl;
    std::cout << "All Test Passed..." << std::endl << std::endl;
}

/**
 * @brief Main function
 * @returns 0 on exit
 */
int main() {
    tests();  // running predefined tests
    uint64_t vertices = uint64_t();
    uint64_t edges = uint64_t();
    std::cout << "Enter the number of vertices : ";
    std::cin >> vertices;
    std::cout << "Enter the number of edges : ";
    std::cin >> edges;

    std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1(
        vertices, std::vector<std::pair<uint64_t, uint64_t>>());
    std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2(
        vertices, std::vector<std::pair<uint64_t, uint64_t>>());

    uint64_t u = uint64_t(), v = uint64_t(), w = uint64_t();
    std::cout << "Enter the edges by three integers in this form: u v w "
              << std::endl;
    std::cout << "Example: if there is and edge between node 1 and node 4 with "
                 "weight 7 enter: 1 4 7, and then press enter"
              << std::endl;
    while (edges--) {
        std::cin >> u >> v >> w;
        graph::bidirectional_dijkstra::addEdge(&adj1, &adj2, u, v, w);
        if (edges != 0) {
            std::cout << "Enter the next edge" << std::endl;
        }
    }

    uint64_t s = uint64_t(), t = uint64_t();
    std::cout
        << "Enter the source node and the target node separated by a space"
        << std::endl;
    std::cout << "Example: If the source node is 5 and the target node is 6 "
                 "enter: 5 6 and press enter"
              << std::endl;
    std::cin >> s >> t;
    int dist =
        graph::bidirectional_dijkstra::Bidijkstra(&adj1, &adj2, s - 1, t - 1);
    if (dist == -1) {
        std::cout << "Target not reachable from source" << std::endl;
    } else {
        std::cout << "Shortest Path Distance : " << dist << std::endl;
    }

    return 0;
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.