BST Recursive Generic

package com.thealgorithms.datastructures.trees;

import java.util.ArrayList;
import java.util.List;

/**
 * <h1>Binary Search Tree (Recursive) Generic Type Implementation</h1>
 *
 * <p>
 * A recursive implementation of generic type BST.
 *
 * Reference: https://en.wikipedia.org/wiki/Binary_search_tree
 * </p>
 *
 * @author [Madhur Panwar](https://github.com/mdrpanwar)
 */
public class BSTRecursiveGeneric<T extends Comparable<T>> {

    /**
     * only data member is root of BST
     */
    private Node<T> root;

    /**
     * Constructor use to initialize node as null
     */
    public BSTRecursiveGeneric() {
        root = null;
    }

    /**
     * main function for testing
     */
    public static void main(String[] args) {
        System.out.println("Testing for integer data...");
        // Integer
        BSTRecursiveGeneric<Integer> integerTree = new BSTRecursiveGeneric<Integer>();

        integerTree.add(5);
        integerTree.add(10);
        integerTree.add(9);
        assert !integerTree.find(4) : "4 is not yet present in BST";
        assert integerTree.find(10) : "10 should be present in BST";
        integerTree.remove(9);
        assert !integerTree.find(9) : "9 was just deleted from BST";
        integerTree.remove(1);
        assert !integerTree.find(1) : "Since 1 was not present so find deleting would do no change";
        integerTree.add(20);
        integerTree.add(70);
        assert integerTree.find(70) : "70 was inserted but not found";
        /*
     Will print in following order
     5 10 20 70
         */
        integerTree.inorder();
        System.out.println();
        System.out.println("Testing for string data...");
        // String
        BSTRecursiveGeneric<String> stringTree = new BSTRecursiveGeneric<String>();

        stringTree.add("banana");
        stringTree.add("pineapple");
        stringTree.add("date");
        assert !stringTree.find("girl") : "girl is not yet present in BST";
        assert stringTree.find("pineapple") : "10 should be present in BST";
        stringTree.remove("date");
        assert !stringTree.find("date") : "date was just deleted from BST";
        stringTree.remove("boy");
        assert !stringTree.find("boy") : "Since boy was not present so deleting would do no change";
        stringTree.add("india");
        stringTree.add("hills");
        assert stringTree.find("hills") : "hills was inserted but not found";
        /*
     Will print in following order
     banana hills india pineapple
         */
        stringTree.inorder();

    }

    /**
     * Recursive method to delete a data if present in BST.
     *
     * @param node the node under which to (recursively) search for data
     * @param data the value to be deleted
     * @return Node the updated value of root parameter after delete operation
     */
    private Node<T> delete(Node<T> node, T data) {
        if (node == null) {
            System.out.println("No such data present in BST.");
        } else if (node.data.compareTo(data) > 0) {
            node.left = delete(node.left, data);
        } else if (node.data.compareTo(data) < 0) {
            node.right = delete(node.right, data);
        } else {
            if (node.right == null && node.left == null) { // If it is leaf node
                node = null;
            } else if (node.left == null) { // If only right node is present
                Node<T> temp = node.right;
                node.right = null;
                node = temp;
            } else if (node.right == null) { // Only left node is present
                Node<T> temp = node.left;
                node.left = null;
                node = temp;
            } else { // both child are present
                Node<T> temp = node.right;
                // Find leftmost child of right subtree
                while (temp.left != null) {
                    temp = temp.left;
                }
                node.data = temp.data;
                node.right = delete(node.right, temp.data);
            }
        }
        return node;
    }

    /**
     * Recursive insertion of value in BST.
     *
     * @param node to check if the data can be inserted in current node or its
     * subtree
     * @param data the value to be inserted
     * @return the modified value of the root parameter after insertion
     */
    private Node<T> insert(Node<T> node, T data) {
        if (node == null) {
            node = new Node<>(data);
        } else if (node.data.compareTo(data) > 0) {
            node.left = insert(node.left, data);
        } else if (node.data.compareTo(data) < 0) {
            node.right = insert(node.right, data);
        }
        return node;
    }

    /**
     * Recursively print Preorder traversal of the BST
     *
     * @param node the root node
     */
    private void preOrder(Node<T> node) {
        if (node == null) {
            return;
        }
        System.out.print(node.data + " ");
        if (node.left != null) {
            preOrder(node.left);
        }
        if (node.right != null) {
            preOrder(node.right);
        }
    }

    /**
     * Recursively print Postorder traversal of BST.
     *
     * @param node the root node
     */
    private void postOrder(Node<T> node) {
        if (node == null) {
            return;
        }
        if (node.left != null) {
            postOrder(node.left);
        }
        if (node.right != null) {
            postOrder(node.right);
        }
        System.out.print(node.data + " ");
    }

    /**
     * Recursively print Inorder traversal of BST.
     *
     * @param node the root node
     */
    private void inOrder(Node<T> node) {
        if (node == null) {
            return;
        }
        if (node.left != null) {
            inOrder(node.left);
        }
        System.out.print(node.data + " ");
        if (node.right != null) {
            inOrder(node.right);
        }
    }

    /**
     * Recursively traverse the tree using inorder traversal and keep adding
     * elements to argument list.
     *
     * @param node the root node
     * @param sortedList the list to add the srted elements into
     */
    private void inOrderSort(Node<T> node, List<T> sortedList) {
        if (node == null) {
            return;
        }
        if (node.left != null) {
            inOrderSort(node.left, sortedList);
        }
        sortedList.add(node.data);
        if (node.right != null) {
            inOrderSort(node.right, sortedList);
        }
    }

    /**
     * Serach recursively if the given value is present in BST or not.
     *
     * @param node the node under which to check
     * @param data the value to be checked
     * @return boolean if data is present or not
     */
    private boolean search(Node<T> node, T data) {
        if (node == null) {
            return false;
        } else if (node.data.compareTo(data) == 0) {
            return true;
        } else if (node.data.compareTo(data) > 0) {
            return search(node.left, data);
        } else {
            return search(node.right, data);
        }
    }

    /**
     * add in BST. if the value is not already present it is inserted or else no
     * change takes place.
     *
     * @param data the value to be inserted
     */
    public void add(T data) {
        this.root = insert(this.root, data);
    }

    /**
     * If data is present in BST delete it else do nothing.
     *
     * @param data the value to be removed
     */
    public void remove(T data) {
        this.root = delete(this.root, data);
    }

    /**
     * To call inorder traversal on tree
     */
    public void inorder() {
        System.out.println("Inorder traversal of this tree is:");
        inOrder(this.root);
        System.out.println(); // for next line
    }

    /**
     * return a sorted list by traversing the tree elements using inorder
     * traversal
     */
    public List<T> inorderSort() {
        List<T> sortedList = new ArrayList<>();
        inOrderSort(this.root, sortedList);
        return sortedList;
    }

    /**
     * To call postorder traversal on tree
     */
    public void postorder() {
        System.out.println("Postorder traversal of this tree is:");
        postOrder(this.root);
        System.out.println(); // for next line
    }

    /**
     * To call preorder traversal on tree.
     */
    public void preorder() {
        System.out.println("Preorder traversal of this tree is:");
        preOrder(this.root);
        System.out.println(); // for next line
    }

    /**
     * To check if given value is present in tree or not.
     *
     * @param data the data to be found for
     */
    public boolean find(T data) {
        if (search(this.root, data)) {
            System.out.println(data + " is present in given BST.");
            return true;
        }
        System.out.println(data + " not found.");
        return false;
    }

    /**
     * The generic Node class used for building binary search tree
     */
    private static class Node<T> {

        T data;
        Node<T> left;
        Node<T> right;

        /**
         * Constructor with data as parameter
         */
        Node(T d) {
            data = d;
            left = null;
            right = null;
        }
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.