Connected Components

"""
https://en.wikipedia.org/wiki/Component_(graph_theory)

Finding connected components in graph

"""

test_graph_1 = {0: [1, 2], 1: [0, 3], 2: [0], 3: [1], 4: [5, 6], 5: [4, 6], 6: [4, 5]}

test_graph_2 = {0: [1, 2, 3], 1: [0, 3], 2: [0], 3: [0, 1], 4: [], 5: []}


def dfs(graph: dict, vert: int, visited: list) -> list:
    """
    Use depth first search to find all vertices
    being in the same component as initial vertex
    >>> dfs(test_graph_1, 0, 5 * [False])
    [0, 1, 3, 2]
    >>> dfs(test_graph_2, 0, 6 * [False])
    [0, 1, 3, 2]
    """

    visited[vert] = True
    connected_verts = []

    for neighbour in graph[vert]:
        if not visited[neighbour]:
            connected_verts += dfs(graph, neighbour, visited)

    return [vert] + connected_verts


def connected_components(graph: dict) -> list:
    """
    This function takes graph as a parameter
    and then returns the list of connected components
    >>> connected_components(test_graph_1)
    [[0, 1, 3, 2], [4, 5, 6]]
    >>> connected_components(test_graph_2)
    [[0, 1, 3, 2], [4], [5]]
    """

    graph_size = len(graph)
    visited = graph_size * [False]
    components_list = []

    for i in range(graph_size):
        if not visited[i]:
            i_connected = dfs(graph, i, visited)
            components_list.append(i_connected)

    return components_list


if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.