Dilation Operation

import numpy as np
from PIL import Image


def rgb2gray(rgb: np.array) -> np.array:
    """
    Return gray image from rgb image
    >>> rgb2gray(np.array([[[127, 255, 0]]]))
    array([[187.6453]])
    >>> rgb2gray(np.array([[[0, 0, 0]]]))
    array([[0.]])
    >>> rgb2gray(np.array([[[2, 4, 1]]]))
    array([[3.0598]])
    >>> rgb2gray(np.array([[[26, 255, 14], [5, 147, 20], [1, 200, 0]]]))
    array([[159.0524,  90.0635, 117.6989]])
    """
    r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
    return 0.2989 * r + 0.5870 * g + 0.1140 * b


def gray2binary(gray: np.array) -> np.array:
    """
    Return binary image from gray image
    >>> gray2binary(np.array([[127, 255, 0]]))
    array([[False,  True, False]])
    >>> gray2binary(np.array([[0]]))
    array([[False]])
    >>> gray2binary(np.array([[26.2409, 4.9315, 1.4729]]))
    array([[False, False, False]])
    >>> gray2binary(np.array([[26, 255, 14], [5, 147, 20], [1, 200, 0]]))
    array([[False,  True, False],
           [False,  True, False],
           [False,  True, False]])
    """
    return (127 < gray) & (gray <= 255)


def dilation(image: np.array, kernel: np.array) -> np.array:
    """
    Return dilated image
    >>> dilation(np.array([[True, False, True]]), np.array([[0, 1, 0]]))
    array([[False, False, False]])
    >>> dilation(np.array([[False, False, True]]), np.array([[1, 0, 1]]))
    array([[False, False, False]])
    """
    output = np.zeros_like(image)
    image_padded = np.zeros(
        (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)
    )

    # Copy image to padded image
    image_padded[kernel.shape[0] - 2 : -1 :, kernel.shape[1] - 2 : -1 :] = image

    # Iterate over image & apply kernel
    for x in range(image.shape[1]):
        for y in range(image.shape[0]):
            summation = (
                kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
            ).sum()
            output[y, x] = int(summation > 0)
    return output


# kernel to be applied
structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])


if __name__ == "__main__":
    # read original image
    image = np.array(Image.open(r"..\image_data\lena.jpg"))
    output = dilation(gray2binary(rgb2gray(image)), structuring_element)
    # Save the output image
    pil_img = Image.fromarray(output).convert("RGB")
    pil_img.save("result_dilation.png")
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.