Extended Euclidean Algorithm

"""
Extended Euclidean Algorithm.

Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""

# @Author: S. Sharma <silentcat>
# @Date:   2019-02-25T12:08:53-06:00
# @Email:  silentcat@protonmail.com
# @Last modified by:   pikulet
# @Last modified time: 2020-10-02
from __future__ import annotations

import sys


def extended_euclidean_algorithm(a: int, b: int) -> tuple[int, int]:
    """
    Extended Euclidean Algorithm.

    Finds 2 numbers a and b such that it satisfies
    the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)

    >>> extended_euclidean_algorithm(1, 24)
    (1, 0)

    >>> extended_euclidean_algorithm(8, 14)
    (2, -1)

    >>> extended_euclidean_algorithm(240, 46)
    (-9, 47)

    >>> extended_euclidean_algorithm(1, -4)
    (1, 0)

    >>> extended_euclidean_algorithm(-2, -4)
    (-1, 0)

    >>> extended_euclidean_algorithm(0, -4)
    (0, -1)

    >>> extended_euclidean_algorithm(2, 0)
    (1, 0)

    """
    # base cases
    if abs(a) == 1:
        return a, 0
    elif abs(b) == 1:
        return 0, b

    old_remainder, remainder = a, b
    old_coeff_a, coeff_a = 1, 0
    old_coeff_b, coeff_b = 0, 1

    while remainder != 0:
        quotient = old_remainder // remainder
        old_remainder, remainder = remainder, old_remainder - quotient * remainder
        old_coeff_a, coeff_a = coeff_a, old_coeff_a - quotient * coeff_a
        old_coeff_b, coeff_b = coeff_b, old_coeff_b - quotient * coeff_b

    # sign correction for negative numbers
    if a < 0:
        old_coeff_a = -old_coeff_a
    if b < 0:
        old_coeff_b = -old_coeff_b

    return old_coeff_a, old_coeff_b


def main():
    """Call Extended Euclidean Algorithm."""
    if len(sys.argv) < 3:
        print("2 integer arguments required")
        exit(1)
    a = int(sys.argv[1])
    b = int(sys.argv[2])
    print(extended_euclidean_algorithm(a, b))


if __name__ == "__main__":
    main()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.