FFT Bluestein

package com.thealgorithms.maths;

import java.util.ArrayList;

/**
 * Class for calculating the Fast Fourier Transform (FFT) of a discrete signal
 * using the Bluestein's algorithm.
 *
 * @author Ioannis Karavitsis
 * @version 1.0
 */
public class FFTBluestein {

    /**
     * Bluestein's FFT Algorithm.
     *
     * <p>
     * More info:
     * https://en.wikipedia.org/wiki/Chirp_Z-transform#Bluestein.27s_algorithm
     * http://tka4.org/materials/lib/Articles-Books/Numerical%20Algorithms/Hartley_Trasform/Bluestein%27s%20FFT%20algorithm%20-%20Wikipedia,%20the%20free%20encyclopedia.htm
     *
     * @param x The discrete signal which is then converted to the FFT or the
     * IFFT of signal x.
     * @param inverse True if you want to find the inverse FFT.
     */
    public static void fftBluestein(ArrayList<FFT.Complex> x, boolean inverse) {
        int N = x.size();
        int bnSize = 2 * N - 1;
        int direction = inverse ? -1 : 1;
        ArrayList<FFT.Complex> an = new ArrayList<>();
        ArrayList<FFT.Complex> bn = new ArrayList<>();

        /* Initialization of the b(n) sequence (see Wikipedia's article above for the symbols used)*/
        for (int i = 0; i < bnSize; i++) {
            bn.add(new FFT.Complex());
        }

        for (int i = 0; i < N; i++) {
            double angle = (i - N + 1) * (i - N + 1) * Math.PI / N * direction;
            bn.set(i, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
            bn.set(bnSize - i - 1, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
        }

        /* Initialization of the a(n) sequence */
        for (int i = 0; i < N; i++) {
            double angle = -i * i * Math.PI / N * direction;
            an.add(x.get(i).multiply(new FFT.Complex(Math.cos(angle), Math.sin(angle))));
        }

        ArrayList<FFT.Complex> convolution = ConvolutionFFT.convolutionFFT(an, bn);

        /* The final multiplication of the convolution with the b*(k) factor  */
        for (int i = 0; i < N; i++) {
            double angle = -1 * i * i * Math.PI / N * direction;
            FFT.Complex bk = new FFT.Complex(Math.cos(angle), Math.sin(angle));
            x.set(i, bk.multiply(convolution.get(i + N - 1)));
        }

        /* Divide by N if we want the inverse FFT */
        if (inverse) {
            for (int i = 0; i < N; i++) {
                FFT.Complex z = x.get(i);
                x.set(i, z.divide(N));
            }
        }
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.