Finding Bridges

"""
An edge is a bridge if, after removing it count of connected components in graph will
be increased by one. Bridges represent vulnerabilities in a connected network and are
useful for designing reliable networks. For example, in a wired computer network, an
articulation point indicates the critical computers and a bridge indicates the critical
wires or connections.

For more details, refer this article:
https://www.geeksforgeeks.org/bridge-in-a-graph/
"""


def __get_demo_graph(index):
    return [
        {
            0: [1, 2],
            1: [0, 2],
            2: [0, 1, 3, 5],
            3: [2, 4],
            4: [3],
            5: [2, 6, 8],
            6: [5, 7],
            7: [6, 8],
            8: [5, 7],
        },
        {
            0: [6],
            1: [9],
            2: [4, 5],
            3: [4],
            4: [2, 3],
            5: [2],
            6: [0, 7],
            7: [6],
            8: [],
            9: [1],
        },
        {
            0: [4],
            1: [6],
            2: [],
            3: [5, 6, 7],
            4: [0, 6],
            5: [3, 8, 9],
            6: [1, 3, 4, 7],
            7: [3, 6, 8, 9],
            8: [5, 7],
            9: [5, 7],
        },
        {
            0: [1, 3],
            1: [0, 2, 4],
            2: [1, 3, 4],
            3: [0, 2, 4],
            4: [1, 2, 3],
        },
    ][index]


def compute_bridges(graph: dict[int, list[int]]) -> list[tuple[int, int]]:
    """
    Return the list of undirected graph bridges [(a1, b1), ..., (ak, bk)]; ai <= bi
    >>> compute_bridges(__get_demo_graph(0))
    [(3, 4), (2, 3), (2, 5)]
    >>> compute_bridges(__get_demo_graph(1))
    [(6, 7), (0, 6), (1, 9), (3, 4), (2, 4), (2, 5)]
    >>> compute_bridges(__get_demo_graph(2))
    [(1, 6), (4, 6), (0, 4)]
    >>> compute_bridges(__get_demo_graph(3))
    []
    >>> compute_bridges({})
    []
    """

    id = 0
    n = len(graph)  # No of vertices in graph
    low = [0] * n
    visited = [False] * n

    def dfs(at, parent, bridges, id):
        visited[at] = True
        low[at] = id
        id += 1
        for to in graph[at]:
            if to == parent:
                pass
            elif not visited[to]:
                dfs(to, at, bridges, id)
                low[at] = min(low[at], low[to])
                if id <= low[to]:
                    bridges.append((at, to) if at < to else (to, at))
            else:
                # This edge is a back edge and cannot be a bridge
                low[at] = min(low[at], low[to])

    bridges: list[tuple[int, int]] = []
    for i in range(n):
        if not visited[i]:
            dfs(i, -1, bridges, id)
    return bridges


if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.