Frequent Pattern Graph Miner

"""
FP-GraphMiner - A Fast Frequent Pattern Mining Algorithm for Network Graphs

A novel Frequent Pattern Graph Mining algorithm, FP-GraphMiner, that compactly
represents a set of network graphs as a Frequent Pattern Graph (or FP-Graph).
This graph can be used to efficiently mine frequent subgraphs including maximal
frequent subgraphs and maximum common subgraphs.

URL: https://www.researchgate.net/publication/235255851
"""
# fmt: off
edge_array = [
    ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12', 'cd-e2', 'ce-e4',
     'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3', 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3'],
    ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'cd-e2', 'de-e1', 'df-e8',
     'ef-e3', 'eg-e2', 'fg-e6'],
    ['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'de-e1', 'df-e8', 'dg-e5', 'ef-e3', 'eg-e2',
     'eh-e12', 'fg-e6', 'fh-e10', 'gh-e6'],
    ['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'bh-e12', 'cd-e2', 'df-e8', 'dh-e10'],
    ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'cd-e2', 'ce-e4', 'de-e1', 'df-e8',
     'dg-e5', 'ef-e3', 'eg-e2', 'fg-e6']
]
# fmt: on


def get_distinct_edge(edge_array):
    """
    Return Distinct edges from edge array of multiple graphs
    >>> sorted(get_distinct_edge(edge_array))
    ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
    """
    distinct_edge = set()
    for row in edge_array:
        for item in row:
            distinct_edge.add(item[0])
    return list(distinct_edge)


def get_bitcode(edge_array, distinct_edge):
    """
    Return bitcode of distinct_edge
    """
    bitcode = ["0"] * len(edge_array)
    for i, row in enumerate(edge_array):
        for item in row:
            if distinct_edge in item[0]:
                bitcode[i] = "1"
                break
    return "".join(bitcode)


def get_frequency_table(edge_array):
    """
    Returns Frequency Table
    """
    distinct_edge = get_distinct_edge(edge_array)
    frequency_table = dict()

    for item in distinct_edge:
        bit = get_bitcode(edge_array, item)
        # print('bit',bit)
        # bt=''.join(bit)
        s = bit.count("1")
        frequency_table[item] = [s, bit]
    # Store [Distinct edge, WT(Bitcode), Bitcode] in descending order
    sorted_frequency_table = [
        [k, v[0], v[1]]
        for k, v in sorted(frequency_table.items(), key=lambda v: v[1][0], reverse=True)
    ]
    return sorted_frequency_table


def get_nodes(frequency_table):
    """
    Returns nodes
    format nodes={bitcode:edges that represent the bitcode}
    >>> get_nodes([['ab', 5, '11111'], ['ac', 5, '11111'], ['df', 5, '11111'],
    ...            ['bd', 5, '11111'], ['bc', 5, '11111']])
    {'11111': ['ab', 'ac', 'df', 'bd', 'bc']}
    """
    nodes = {}
    for i, item in enumerate(frequency_table):
        nodes.setdefault(item[2], []).append(item[0])
    return nodes


def get_cluster(nodes):
    """
    Returns cluster
    format cluster:{WT(bitcode):nodes with same WT}
    """
    cluster = {}
    for key, value in nodes.items():
        cluster.setdefault(key.count("1"), {})[key] = value
    return cluster


def get_support(cluster):
    """
    Returns support
    >>> get_support({5: {'11111': ['ab', 'ac', 'df', 'bd', 'bc']},
    ...              4: {'11101': ['ef', 'eg', 'de', 'fg'], '11011': ['cd']},
    ...              3: {'11001': ['ad'], '10101': ['dg']},
    ...              2: {'10010': ['dh', 'bh'], '11000': ['be'], '10100': ['gh'],
    ...                  '10001': ['ce']},
    ...              1: {'00100': ['fh', 'eh'], '10000': ['hi']}})
    [100.0, 80.0, 60.0, 40.0, 20.0]
    """
    return [i * 100 / len(cluster) for i in cluster]


def print_all() -> None:
    print("\nNodes\n")
    for key, value in nodes.items():
        print(key, value)
    print("\nSupport\n")
    print(support)
    print("\n Cluster \n")
    for key, value in sorted(cluster.items(), reverse=True):
        print(key, value)
    print("\n Graph\n")
    for key, value in graph.items():
        print(key, value)
    print("\n Edge List of Frequent subgraphs \n")
    for edge_list in freq_subgraph_edge_list:
        print(edge_list)


def create_edge(nodes, graph, cluster, c1):
    """
    create edge between the nodes
    """
    for i in cluster[c1].keys():
        count = 0
        c2 = c1 + 1
        while c2 < max(cluster.keys()):
            for j in cluster[c2].keys():
                """
                creates edge only if the condition satisfies
                """
                if int(i, 2) & int(j, 2) == int(i, 2):
                    if tuple(nodes[i]) in graph:
                        graph[tuple(nodes[i])].append(nodes[j])
                    else:
                        graph[tuple(nodes[i])] = [nodes[j]]
                    count += 1
            if count == 0:
                c2 = c2 + 1
            else:
                break


def construct_graph(cluster, nodes):
    X = cluster[max(cluster.keys())]
    cluster[max(cluster.keys()) + 1] = "Header"
    graph = {}
    for i in X:
        if tuple(["Header"]) in graph:
            graph[tuple(["Header"])].append(X[i])
        else:
            graph[tuple(["Header"])] = [X[i]]
    for i in X:
        graph[tuple(X[i])] = [["Header"]]
    i = 1
    while i < max(cluster) - 1:
        create_edge(nodes, graph, cluster, i)
        i = i + 1
    return graph


def myDFS(graph, start, end, path=None):
    """
    find different DFS walk from given node to Header node
    """
    path = (path or []) + [start]
    if start == end:
        paths.append(path)
    for node in graph[start]:
        if tuple(node) not in path:
            myDFS(graph, tuple(node), end, path)


def find_freq_subgraph_given_support(s, cluster, graph):
    """
    find edges of multiple frequent subgraphs
    """
    k = int(s / 100 * (len(cluster) - 1))
    for i in cluster[k].keys():
        myDFS(graph, tuple(cluster[k][i]), tuple(["Header"]))


def freq_subgraphs_edge_list(paths):
    """
    returns Edge list for frequent subgraphs
    """
    freq_sub_EL = []
    for edges in paths:
        EL = []
        for j in range(len(edges) - 1):
            temp = list(edges[j])
            for e in temp:
                edge = (e[0], e[1])
                EL.append(edge)
        freq_sub_EL.append(EL)
    return freq_sub_EL


def preprocess(edge_array):
    """
    Preprocess the edge array
    >>> preprocess([['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12',
    ...              'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3',
    ...              'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3']])

    """
    for i in range(len(edge_array)):
        for j in range(len(edge_array[i])):
            t = edge_array[i][j].split("-")
            edge_array[i][j] = t


if __name__ == "__main__":
    preprocess(edge_array)
    frequency_table = get_frequency_table(edge_array)
    nodes = get_nodes(frequency_table)
    cluster = get_cluster(nodes)
    support = get_support(cluster)
    graph = construct_graph(cluster, nodes)
    find_freq_subgraph_given_support(60, cluster, graph)
    paths: list = []
    freq_subgraph_edge_list = freq_subgraphs_edge_list(paths)
    print_all()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.