Gaussian Naive Bayes

# Gaussian Naive Bayes Example
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB


def main():

    """
    Gaussian Naive Bayes Example using sklearn function.
    Iris type dataset is used to demonstrate algorithm.
    """

    # Load Iris dataset
    iris = load_iris()

    # Split dataset into train and test data
    X = iris["data"]  # features
    Y = iris["target"]
    x_train, x_test, y_train, y_test = train_test_split(
        X, Y, test_size=0.3, random_state=1
    )

    # Gaussian Naive Bayes
    NB_model = GaussianNB()
    NB_model.fit(x_train, y_train)

    # Display Confusion Matrix
    plot_confusion_matrix(
        NB_model,
        x_test,
        y_test,
        display_labels=iris["target_names"],
        cmap="Blues",
        normalize="true",
    )
    plt.title("Normalized Confusion Matrix - IRIS Dataset")
    plt.show()


if __name__ == "__main__":
    main()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.