Greedy Best First

"""
https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS
"""

from __future__ import annotations

Path = list[tuple[int, int]]

grid = [
    [0, 0, 0, 0, 0, 0, 0],
    [0, 1, 0, 0, 0, 0, 0],  # 0 are free path whereas 1's are obstacles
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 1, 0, 0, 0, 0],
    [1, 0, 1, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 1, 0, 0],
]

delta = ([-1, 0], [0, -1], [1, 0], [0, 1])  # up, left, down, right


class Node:
    """
    >>> k = Node(0, 0, 4, 5, 0, None)
    >>> k.calculate_heuristic()
    9
    >>> n = Node(1, 4, 3, 4, 2, None)
    >>> n.calculate_heuristic()
    2
    >>> l = [k, n]
    >>> n == l[0]
    False
    >>> l.sort()
    >>> n == l[0]
    True
    """

    def __init__(
        self,
        pos_x: int,
        pos_y: int,
        goal_x: int,
        goal_y: int,
        g_cost: float,
        parent: Node | None,
    ):
        self.pos_x = pos_x
        self.pos_y = pos_y
        self.pos = (pos_y, pos_x)
        self.goal_x = goal_x
        self.goal_y = goal_y
        self.g_cost = g_cost
        self.parent = parent
        self.f_cost = self.calculate_heuristic()

    def calculate_heuristic(self) -> float:
        """
        The heuristic here is the Manhattan Distance
        Could elaborate to offer more than one choice
        """
        dy = abs(self.pos_x - self.goal_x)
        dx = abs(self.pos_y - self.goal_y)
        return dx + dy

    def __lt__(self, other) -> bool:
        return self.f_cost < other.f_cost


class GreedyBestFirst:
    """
    >>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
    >>> [x.pos for x in gbf.get_successors(gbf.start)]
    [(1, 0), (0, 1)]
    >>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
    (0, 1)
    >>> (gbf.start.pos_y + delta[2][0], gbf.start.pos_x + delta[2][1])
    (1, 0)
    >>> gbf.retrace_path(gbf.start)
    [(0, 0)]
    >>> gbf.search()  # doctest: +NORMALIZE_WHITESPACE
    [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
     (6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
    """

    def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
        self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
        self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)

        self.open_nodes = [self.start]
        self.closed_nodes: list[Node] = []

        self.reached = False

    def search(self) -> Path | None:
        """
        Search for the path,
        if a path is not found, only the starting position is returned
        """
        while self.open_nodes:
            # Open Nodes are sorted using __lt__
            self.open_nodes.sort()
            current_node = self.open_nodes.pop(0)

            if current_node.pos == self.target.pos:
                self.reached = True
                return self.retrace_path(current_node)

            self.closed_nodes.append(current_node)
            successors = self.get_successors(current_node)

            for child_node in successors:
                if child_node in self.closed_nodes:
                    continue

                if child_node not in self.open_nodes:
                    self.open_nodes.append(child_node)
                else:
                    # retrieve the best current path
                    better_node = self.open_nodes.pop(self.open_nodes.index(child_node))

                    if child_node.g_cost < better_node.g_cost:
                        self.open_nodes.append(child_node)
                    else:
                        self.open_nodes.append(better_node)

        if not self.reached:
            return [self.start.pos]
        return None

    def get_successors(self, parent: Node) -> list[Node]:
        """
        Returns a list of successors (both in the grid and free spaces)
        """
        successors = []
        for action in delta:
            pos_x = parent.pos_x + action[1]
            pos_y = parent.pos_y + action[0]

            if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
                continue

            if grid[pos_y][pos_x] != 0:
                continue

            successors.append(
                Node(
                    pos_x,
                    pos_y,
                    self.target.pos_y,
                    self.target.pos_x,
                    parent.g_cost + 1,
                    parent,
                )
            )
        return successors

    def retrace_path(self, node: Node | None) -> Path:
        """
        Retrace the path from parents to parents until start node
        """
        current_node = node
        path = []
        while current_node is not None:
            path.append((current_node.pos_y, current_node.pos_x))
            current_node = current_node.parent
        path.reverse()
        return path


if __name__ == "__main__":
    init = (0, 0)
    goal = (len(grid) - 1, len(grid[0]) - 1)
    for elem in grid:
        print(elem)

    print("------")

    greedy_bf = GreedyBestFirst(init, goal)
    path = greedy_bf.search()
    if path:
        for pos_x, pos_y in path:
            grid[pos_x][pos_y] = 2

        for elem in grid:
            print(elem)
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.