Alger logo
𝔸𝕝𝕘𝕖𝕣
About

Integral Approximation 2

/**
 * @file
 * @brief [Monte Carlo
 * Integration](https://en.wikipedia.org/wiki/Monte_Carlo_integration)
 *
 * @details
 * In mathematics, Monte Carlo integration is a technique for numerical
 * integration using random numbers. It is a particular Monte Carlo method that
 * numerically computes a definite integral. While other algorithms usually
 * evaluate the integrand at a regular grid, Monte Carlo randomly chooses points
 * at which the integrand is evaluated. This method is particularly useful for
 * higher-dimensional integrals.
 *
 * This implementation supports arbitrary pdfs.
 * These pdfs are sampled using the [Metropolis-Hastings
 * algorithm](https://en.wikipedia.org/wiki/Metropolis–Hastings_algorithm). This
 * can be swapped out by every other sampling techniques for example the inverse
 * method. Metropolis-Hastings was chosen because it is the most general and can
 * also be extended for a higher dimensional sampling space.
 *
 * @author [Domenic Zingsheim](https://github.com/DerAndereDomenic)
 */

#define _USE_MATH_DEFINES  /// for M_PI on windows
#include <cmath>           /// for math functions
#include <cstdint>         /// for fixed size data types
#include <ctime>           /// for time to initialize rng
#include <functional>      /// for function pointers
#include <iostream>        /// for std::cout
#include <random>          /// for random number generation
#include <vector>          /// for std::vector

/**
 * @namespace math
 * @brief Math algorithms
 */
namespace math {
/**
 * @namespace monte_carlo
 * @brief Functions for the [Monte Carlo
 * Integration](https://en.wikipedia.org/wiki/Monte_Carlo_integration)
 * implementation
 */
namespace monte_carlo {

using Function = std::function<double(
    double&)>;  /// short-hand for std::functions used in this implementation

/**
 * @brief Generate samples according to some pdf
 * @details This function uses Metropolis-Hastings to generate random numbers.
 * It generates a sequence of random numbers by using a markov chain. Therefore,
 * we need to define a start_point and the number of samples we want to
 * generate. Because the first samples generated by the markov chain may not be
 * distributed according to the given pdf, one can specify how many samples
 * should be discarded before storing samples.
 * @param start_point The starting point of the markov chain
 * @param pdf The pdf to sample
 * @param num_samples The number of samples to generate
 * @param discard How many samples should be discarded at the start
 * @returns A vector of size num_samples with samples distributed according to
 * the pdf
 */
std::vector<double> generate_samples(const double& start_point,
                                     const Function& pdf,
                                     const uint32_t& num_samples,
                                     const uint32_t& discard = 100000) {
    std::vector<double> samples;
    samples.reserve(num_samples);

    double x_t = start_point;

    std::default_random_engine generator;
    std::uniform_real_distribution<double> uniform(0.0, 1.0);
    std::normal_distribution<double> normal(0.0, 1.0);
    generator.seed(time(nullptr));

    for (uint32_t t = 0; t < num_samples + discard; ++t) {
        // Generate a new proposal according to some mutation strategy.
        // This is arbitrary and can be swapped.
        double x_dash = normal(generator) + x_t;
        double acceptance_probability = std::min(pdf(x_dash) / pdf(x_t), 1.0);
        double u = uniform(generator);

        // Accept "new state" according to the acceptance_probability
        if (u <= acceptance_probability) {
            x_t = x_dash;
        }

        if (t >= discard) {
            samples.push_back(x_t);
        }
    }

    return samples;
}

/**
 * @brief Compute an approximation of an integral using Monte Carlo integration
 * @details The integration domain [a,b] is given by the pdf.
 * The pdf has to fulfill the following conditions:
 * 1) for all x \in [a,b] : p(x) > 0
 * 2) for all x \not\in [a,b] : p(x) = 0
 * 3) \int_a^b p(x) dx = 1
 * @param start_point The start point of the Markov Chain (see generate_samples)
 * @param function The function to integrate
 * @param pdf The pdf to sample
 * @param num_samples The number of samples used to approximate the integral
 * @returns The approximation of the integral according to 1/N \sum_{i}^N f(x_i)
 * / p(x_i)
 */
double integral_monte_carlo(const double& start_point, const Function& function,
                            const Function& pdf,
                            const uint32_t& num_samples = 1000000) {
    double integral = 0.0;
    std::vector<double> samples =
        generate_samples(start_point, pdf, num_samples);

    for (double sample : samples) {
        integral += function(sample) / pdf(sample);
    }

    return integral / static_cast<double>(samples.size());
}

}  // namespace monte_carlo
}  // namespace math

/**
 * @brief Self-test implementations
 * @returns void
 */
static void test() {
    std::cout << "Disclaimer: Because this is a randomized algorithm,"
              << std::endl;
    std::cout
        << "it may happen that singular samples deviate from the true result."
        << std::endl
        << std::endl;
    ;

    math::monte_carlo::Function f;
    math::monte_carlo::Function pdf;
    double integral = 0;
    double lower_bound = 0, upper_bound = 0;

    /* \int_{-2}^{2} -x^2 + 4 dx */
    f = [&](double& x) { return -x * x + 4.0; };

    lower_bound = -2.0;
    upper_bound = 2.0;
    pdf = [&](double& x) {
        if (x >= lower_bound && x <= -1.0) {
            return 0.1;
        }
        if (x <= upper_bound && x >= 1.0) {
            return 0.1;
        }
        if (x > -1.0 && x < 1.0) {
            return 0.4;
        }
        return 0.0;
    };

    integral = math::monte_carlo::integral_monte_carlo(
        (upper_bound - lower_bound) / 2.0, f, pdf);

    std::cout << "This number should be close to 10.666666: " << integral
              << std::endl;

    /* \int_{0}^{1} e^x dx */
    f = [&](double& x) { return std::exp(x); };

    lower_bound = 0.0;
    upper_bound = 1.0;
    pdf = [&](double& x) {
        if (x >= lower_bound && x <= 0.2) {
            return 0.1;
        }
        if (x > 0.2 && x <= 0.4) {
            return 0.4;
        }
        if (x > 0.4 && x < upper_bound) {
            return 1.5;
        }
        return 0.0;
    };

    integral = math::monte_carlo::integral_monte_carlo(
        (upper_bound - lower_bound) / 2.0, f, pdf);

    std::cout << "This number should be close to 1.7182818: " << integral
              << std::endl;

    /* \int_{-\infty}^{\infty} sinc(x) dx, sinc(x) = sin(pi * x) / (pi * x)
       This is a difficult integral because of its infinite domain.
       Therefore, it may deviate largely from the expected result.
    */
    f = [&](double& x) { return std::sin(M_PI * x) / (M_PI * x); };

    pdf = [&](double& x) {
        return 1.0 / std::sqrt(2.0 * M_PI) * std::exp(-x * x / 2.0);
    };

    integral = math::monte_carlo::integral_monte_carlo(0.0, f, pdf, 10000000);

    std::cout << "This number should be close to 1.0: " << integral
              << std::endl;
}

/**
 * @brief Main function
 * @returns 0 on exit
 */
int main() {
    test();  // run self-test implementations
    return 0;
}
Algerlogo

© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.