K Means Clust

"""README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
  - sklearn
  - numpy
  - matplotlib
Python:
  - 3.5
Inputs:
  - X , a 2D numpy array of features.
  - k , number of clusters to create.
  - initial_centroids , initial centroid values generated by utility function(mentioned
    in usage).
  - maxiter , maximum number of iterations to process.
  - heterogeneity , empty list that will be filled with hetrogeneity values if passed
    to kmeans func.
Usage:
  1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
  2. create initial_centroids,
        initial_centroids = get_initial_centroids(
            X,
            k,
            seed=0 # seed value for initial centroid generation,
                   # None for randomness(default=None)
            )
  3. find centroids and clusters using kmeans function.
        centroids, cluster_assignment = kmeans(
            X,
            k,
            initial_centroids,
            maxiter=400,
            record_heterogeneity=heterogeneity,
            verbose=True # whether to print logs in console or not.(default=False)
            )
  4. Plot the loss function, hetrogeneity values for every iteration saved in
     hetrogeneity list.
        plot_heterogeneity(
            heterogeneity,
            k
        )
  5. Transfers Dataframe into excel format it must have feature called
      'Clust' with k means clustering numbers in it.
"""
import warnings

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.metrics import pairwise_distances

warnings.filterwarnings("ignore")

TAG = "K-MEANS-CLUST/ "


def get_initial_centroids(data, k, seed=None):
    """Randomly choose k data points as initial centroids"""
    if seed is not None:  # useful for obtaining consistent results
        np.random.seed(seed)
    n = data.shape[0]  # number of data points

    # Pick K indices from range [0, N).
    rand_indices = np.random.randint(0, n, k)

    # Keep centroids as dense format, as many entries will be nonzero due to averaging.
    # As long as at least one document in a cluster contains a word,
    # it will carry a nonzero weight in the TF-IDF vector of the centroid.
    centroids = data[rand_indices, :]

    return centroids


def centroid_pairwise_dist(X, centroids):
    return pairwise_distances(X, centroids, metric="euclidean")


def assign_clusters(data, centroids):

    # Compute distances between each data point and the set of centroids:
    # Fill in the blank (RHS only)
    distances_from_centroids = centroid_pairwise_dist(data, centroids)

    # Compute cluster assignments for each data point:
    # Fill in the blank (RHS only)
    cluster_assignment = np.argmin(distances_from_centroids, axis=1)

    return cluster_assignment


def revise_centroids(data, k, cluster_assignment):
    new_centroids = []
    for i in range(k):
        # Select all data points that belong to cluster i. Fill in the blank (RHS only)
        member_data_points = data[cluster_assignment == i]
        # Compute the mean of the data points. Fill in the blank (RHS only)
        centroid = member_data_points.mean(axis=0)
        new_centroids.append(centroid)
    new_centroids = np.array(new_centroids)

    return new_centroids


def compute_heterogeneity(data, k, centroids, cluster_assignment):

    heterogeneity = 0.0
    for i in range(k):

        # Select all data points that belong to cluster i. Fill in the blank (RHS only)
        member_data_points = data[cluster_assignment == i, :]

        if member_data_points.shape[0] > 0:  # check if i-th cluster is non-empty
            # Compute distances from centroid to data points (RHS only)
            distances = pairwise_distances(
                member_data_points, [centroids[i]], metric="euclidean"
            )
            squared_distances = distances**2
            heterogeneity += np.sum(squared_distances)

    return heterogeneity


def plot_heterogeneity(heterogeneity, k):
    plt.figure(figsize=(7, 4))
    plt.plot(heterogeneity, linewidth=4)
    plt.xlabel("# Iterations")
    plt.ylabel("Heterogeneity")
    plt.title(f"Heterogeneity of clustering over time, K={k:d}")
    plt.rcParams.update({"font.size": 16})
    plt.show()


def kmeans(
    data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False
):
    """This function runs k-means on given data and initial set of centroids.
    maxiter: maximum number of iterations to run.(default=500)
    record_heterogeneity: (optional) a list, to store the history of heterogeneity
                          as function of iterations
                          if None, do not store the history.
    verbose: if True, print how many data points changed their cluster labels in
                          each iteration"""
    centroids = initial_centroids[:]
    prev_cluster_assignment = None

    for itr in range(maxiter):
        if verbose:
            print(itr, end="")

        # 1. Make cluster assignments using nearest centroids
        cluster_assignment = assign_clusters(data, centroids)

        # 2. Compute a new centroid for each of the k clusters, averaging all data
        #    points assigned to that cluster.
        centroids = revise_centroids(data, k, cluster_assignment)

        # Check for convergence: if none of the assignments changed, stop
        if (
            prev_cluster_assignment is not None
            and (prev_cluster_assignment == cluster_assignment).all()
        ):
            break

        # Print number of new assignments
        if prev_cluster_assignment is not None:
            num_changed = np.sum(prev_cluster_assignment != cluster_assignment)
            if verbose:
                print(
                    "    {:5d} elements changed their cluster assignment.".format(
                        num_changed
                    )
                )

        # Record heterogeneity convergence metric
        if record_heterogeneity is not None:
            # YOUR CODE HERE
            score = compute_heterogeneity(data, k, centroids, cluster_assignment)
            record_heterogeneity.append(score)

        prev_cluster_assignment = cluster_assignment[:]

    return centroids, cluster_assignment


# Mock test below
if False:  # change to true to run this test case.
    from sklearn import datasets as ds

    dataset = ds.load_iris()
    k = 3
    heterogeneity = []
    initial_centroids = get_initial_centroids(dataset["data"], k, seed=0)
    centroids, cluster_assignment = kmeans(
        dataset["data"],
        k,
        initial_centroids,
        maxiter=400,
        record_heterogeneity=heterogeneity,
        verbose=True,
    )
    plot_heterogeneity(heterogeneity, k)


def ReportGenerator(
    df: pd.DataFrame, ClusteringVariables: np.ndarray, FillMissingReport=None
) -> pd.DataFrame:
    """
    Function generates easy-erading clustering report. It takes 2 arguments as an input:
        DataFrame - dataframe with predicted cluester column;
        FillMissingReport - dictionary of rules how we are going to fill missing
        values of for final report generate (not included in modeling);
    in order to run the function following libraries must be imported:
        import pandas as pd
        import numpy as np
    >>> data = pd.DataFrame()
    >>> data['numbers'] = [1, 2, 3]
    >>> data['col1'] = [0.5, 2.5, 4.5]
    >>> data['col2'] = [100, 200, 300]
    >>> data['col3'] = [10, 20, 30]
    >>> data['Cluster'] = [1, 1, 2]
    >>> ReportGenerator(data, ['col1', 'col2'], 0)
               Features               Type   Mark           1           2
    0    # of Customers        ClusterSize  False    2.000000    1.000000
    1    % of Customers  ClusterProportion  False    0.666667    0.333333
    2              col1    mean_with_zeros   True    1.500000    4.500000
    3              col2    mean_with_zeros   True  150.000000  300.000000
    4           numbers    mean_with_zeros  False    1.500000    3.000000
    ..              ...                ...    ...         ...         ...
    99            dummy                 5%  False    1.000000    1.000000
    100           dummy                95%  False    1.000000    1.000000
    101           dummy              stdev  False    0.000000         NaN
    102           dummy               mode  False    1.000000    1.000000
    103           dummy             median  False    1.000000    1.000000
    <BLANKLINE>
    [104 rows x 5 columns]
    """
    # Fill missing values with given rules
    if FillMissingReport:
        df.fillna(value=FillMissingReport, inplace=True)
    df["dummy"] = 1
    numeric_cols = df.select_dtypes(np.number).columns
    report = (
        df.groupby(["Cluster"])[  # construct report dataframe
            numeric_cols
        ]  # group by cluster number
        .agg(
            [
                ("sum", np.sum),
                ("mean_with_zeros", lambda x: np.mean(np.nan_to_num(x))),
                ("mean_without_zeros", lambda x: x.replace(0, np.NaN).mean()),
                (
                    "mean_25-75",
                    lambda x: np.mean(
                        np.nan_to_num(
                            sorted(x)[
                                round(len(x) * 25 / 100) : round(len(x) * 75 / 100)
                            ]
                        )
                    ),
                ),
                ("mean_with_na", np.mean),
                ("min", lambda x: x.min()),
                ("5%", lambda x: x.quantile(0.05)),
                ("25%", lambda x: x.quantile(0.25)),
                ("50%", lambda x: x.quantile(0.50)),
                ("75%", lambda x: x.quantile(0.75)),
                ("95%", lambda x: x.quantile(0.95)),
                ("max", lambda x: x.max()),
                ("count", lambda x: x.count()),
                ("stdev", lambda x: x.std()),
                ("mode", lambda x: x.mode()[0]),
                ("median", lambda x: x.median()),
                ("# > 0", lambda x: (x > 0).sum()),
            ]
        )
        .T.reset_index()
        .rename(index=str, columns={"level_0": "Features", "level_1": "Type"})
    )  # rename columns
    # calculate the size of cluster(count of clientID's)
    clustersize = report[
        (report["Features"] == "dummy") & (report["Type"] == "count")
    ].copy()  # avoid SettingWithCopyWarning
    clustersize.Type = (
        "ClusterSize"  # rename created cluster df to match report column names
    )
    clustersize.Features = "# of Customers"
    clusterproportion = pd.DataFrame(
        clustersize.iloc[:, 2:].values
        / clustersize.iloc[:, 2:].values.sum()  # calculating the proportion of cluster
    )
    clusterproportion[
        "Type"
    ] = "% of Customers"  # rename created cluster df to match report column names
    clusterproportion["Features"] = "ClusterProportion"
    cols = clusterproportion.columns.tolist()
    cols = cols[-2:] + cols[:-2]
    clusterproportion = clusterproportion[cols]  # rearrange columns to match report
    clusterproportion.columns = report.columns
    a = pd.DataFrame(
        abs(
            report[report["Type"] == "count"].iloc[:, 2:].values
            - clustersize.iloc[:, 2:].values
        )
    )  # generating df with count of nan values
    a["Features"] = 0
    a["Type"] = "# of nan"
    a.Features = report[
        report["Type"] == "count"
    ].Features.tolist()  # filling values in order to match report
    cols = a.columns.tolist()
    cols = cols[-2:] + cols[:-2]
    a = a[cols]  # rearrange columns to match report
    a.columns = report.columns  # rename columns to match report
    report = report.drop(
        report[report.Type == "count"].index
    )  # drop count values except cluster size
    report = pd.concat(
        [report, a, clustersize, clusterproportion], axis=0
    )  # concat report with clustert size and nan values
    report["Mark"] = report["Features"].isin(ClusteringVariables)
    cols = report.columns.tolist()
    cols = cols[0:2] + cols[-1:] + cols[2:-1]
    report = report[cols]
    sorter1 = {
        "ClusterSize": 9,
        "ClusterProportion": 8,
        "mean_with_zeros": 7,
        "mean_with_na": 6,
        "max": 5,
        "50%": 4,
        "min": 3,
        "25%": 2,
        "75%": 1,
        "# of nan": 0,
        "# > 0": -1,
        "sum_with_na": -2,
    }
    report = (
        report.assign(
            Sorter1=lambda x: x.Type.map(sorter1),
            Sorter2=lambda x: list(reversed(range(len(x)))),
        )
        .sort_values(["Sorter1", "Mark", "Sorter2"], ascending=False)
        .drop(["Sorter1", "Sorter2"], axis=1)
    )
    report.columns.name = ""
    report = report.reset_index()
    report.drop(columns=["index"], inplace=True)
    return report


if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.