Karger

"""
An implementation of Karger's Algorithm for partitioning a graph.
"""

from __future__ import annotations

import random

# Adjacency list representation of this graph:
# https://en.wikipedia.org/wiki/File:Single_run_of_Karger%E2%80%99s_Mincut_algorithm.svg
TEST_GRAPH = {
    "1": ["2", "3", "4", "5"],
    "2": ["1", "3", "4", "5"],
    "3": ["1", "2", "4", "5", "10"],
    "4": ["1", "2", "3", "5", "6"],
    "5": ["1", "2", "3", "4", "7"],
    "6": ["7", "8", "9", "10", "4"],
    "7": ["6", "8", "9", "10", "5"],
    "8": ["6", "7", "9", "10"],
    "9": ["6", "7", "8", "10"],
    "10": ["6", "7", "8", "9", "3"],
}


def partition_graph(graph: dict[str, list[str]]) -> set[tuple[str, str]]:
    """
    Partitions a graph using Karger's Algorithm. Implemented from
    pseudocode found here:
    https://en.wikipedia.org/wiki/Karger%27s_algorithm.
    This function involves random choices, meaning it will not give
    consistent outputs.

    Args:
        graph: A dictionary containing adacency lists for the graph.
            Nodes must be strings.

    Returns:
        The cutset of the cut found by Karger's Algorithm.

    >>> graph = {'0':['1'], '1':['0']}
    >>> partition_graph(graph)
    {('0', '1')}
    """
    # Dict that maps contracted nodes to a list of all the nodes it "contains."
    contracted_nodes = {node: {node} for node in graph}

    graph_copy = {node: graph[node][:] for node in graph}

    while len(graph_copy) > 2:

        # Choose a random edge.
        u = random.choice(list(graph_copy.keys()))
        v = random.choice(graph_copy[u])

        # Contract edge (u, v) to new node uv
        uv = u + v
        uv_neighbors = list(set(graph_copy[u] + graph_copy[v]))
        uv_neighbors.remove(u)
        uv_neighbors.remove(v)
        graph_copy[uv] = uv_neighbors
        for neighbor in uv_neighbors:
            graph_copy[neighbor].append(uv)

        contracted_nodes[uv] = set(contracted_nodes[u].union(contracted_nodes[v]))

        # Remove nodes u and v.
        del graph_copy[u]
        del graph_copy[v]
        for neighbor in uv_neighbors:
            if u in graph_copy[neighbor]:
                graph_copy[neighbor].remove(u)
            if v in graph_copy[neighbor]:
                graph_copy[neighbor].remove(v)

    # Find cutset.
    groups = [contracted_nodes[node] for node in graph_copy]
    return {
        (node, neighbor)
        for node in groups[0]
        for neighbor in graph[node]
        if neighbor in groups[1]
    }


if __name__ == "__main__":
    print(partition_graph(TEST_GRAPH))
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.