Kohonen Som Trace

/**
 * \addtogroup machine_learning Machine Learning Algorithms
 * @{
 * \file
 * \brief [Kohonen self organizing
 * map](https://en.wikipedia.org/wiki/Self-organizing_map) (data tracing)
 *
 * This example implements a powerful self organizing map algorithm.
 * The algorithm creates a connected network of weights that closely
 * follows the given data points. This this creates a chain of nodes that
 * resembles the given input shape.
 *
 * \author [Krishna Vedala](https://github.com/kvedala)
 *
 * \note This C++ version of the program is considerable slower than its [C
 * counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c)
 * \note The compiled code is much slower when compiled with MS Visual C++ 2019
 * than with GCC on windows
 * \see kohonen_som_topology.cpp
 */
#define _USE_MATH_DEFINES  // required for MS Visual C++
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
#include <vector>
#ifdef _OPENMP  // check if OpenMP based parallellization is available
#include <omp.h>
#endif

/**
 * Helper function to generate a random number in a given interval.
 * \n Steps:
 * 1. `r1 = rand() % 100` gets a random number between 0 and 99
 * 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
 * 3. scale and offset the random number to given range of \f$[a,b]\f$
 *
 * \param[in] a lower limit
 * \param[in] b upper limit
 * \returns random number in the range \f$[a,b]\f$
 */
double _random(double a, double b) {
    return ((b - a) * (std::rand() % 100) / 100.f) + a;
}

/**
 * Save a given n-dimensional data martix to file.
 *
 * \param[in] fname filename to save in (gets overwriten without confirmation)
 * \param[in] X matrix to save
 * \returns 0 if all ok
 * \returns -1 if file creation failed
 */
int save_nd_data(const char *fname,
                 const std::vector<std::valarray<double>> &X) {
    size_t num_points = X.size();       // number of rows
    size_t num_features = X[0].size();  // number of columns

    std::ofstream fp;
    fp.open(fname);
    if (!fp.is_open()) {
        // error with opening file to write
        std::cerr << "Error opening file " << fname << "\n";
        return -1;
    }

    // for each point in the array
    for (int i = 0; i < num_points; i++) {
        // for each feature in the array
        for (int j = 0; j < num_features; j++) {
            fp << X[i][j];               // print the feature value
            if (j < num_features - 1) {  // if not the last feature
                fp << ",";               // suffix comma
            }
        }
        if (i < num_points - 1) {  // if not the last row
            fp << "\n";            // start a new line
        }
    }

    fp.close();
    return 0;
}

/** \namespace machine_learning
 * \brief Machine learning algorithms
 */
namespace machine_learning {

/**
 * Update weights of the SOM using Kohonen algorithm
 *
 * \param[in] X data point
 * \param[in,out] W weights matrix
 * \param[in,out] D temporary vector to store distances
 * \param[in] alpha learning rate \f$0<\alpha\le1\f$
 * \param[in] R neighborhood range
 */
void update_weights(const std::valarray<double> &x,
                    std::vector<std::valarray<double>> *W,
                    std::valarray<double> *D, double alpha, int R) {
    int j = 0, k = 0;
    int num_out = W->size();  // number of SOM output nodes
    // int num_features = x.size();  // number of data features

#ifdef _OPENMP
#pragma omp for
#endif
    // step 1: for each output point
    for (j = 0; j < num_out; j++) {
        // compute Euclidian distance of each output
        // point from the current sample
        (*D)[j] = (((*W)[j] - x) * ((*W)[j] - x)).sum();
    }

    // step 2:  get closest node i.e., node with snallest Euclidian distance to
    // the current pattern
    auto result = std::min_element(std::begin(*D), std::end(*D));
    // double d_min = *result;
    int d_min_idx = std::distance(std::begin(*D), result);

    // step 3a: get the neighborhood range
    int from_node = std::max(0, d_min_idx - R);
    int to_node = std::min(num_out, d_min_idx + R + 1);

    // step 3b: update the weights of nodes in the
    // neighborhood
#ifdef _OPENMP
#pragma omp for
#endif
    for (j = from_node; j < to_node; j++) {
        // update weights of nodes in the neighborhood
        (*W)[j] += alpha * (x - (*W)[j]);
    }
}

/**
 * Apply incremental algorithm with updating neighborhood and learning rates
 * on all samples in the given datset.
 *
 * \param[in] X data set
 * \param[in,out] W weights matrix
 * \param[in] alpha_min terminal value of alpha
 */
void kohonen_som_tracer(const std::vector<std::valarray<double>> &X,
                        std::vector<std::valarray<double>> *W,
                        double alpha_min) {
    int num_samples = X.size();  // number of rows
    // int num_features = X[0].size();  // number of columns
    int num_out = W->size();  // number of rows
    int R = num_out >> 2, iter = 0;
    double alpha = 1.f;

    std::valarray<double> D(num_out);

    // Loop alpha from 1 to slpha_min
    do {
        // Loop for each sample pattern in the data set
        for (int sample = 0; sample < num_samples; sample++) {
            // update weights for the current input pattern sample
            update_weights(X[sample], W, &D, alpha, R);
        }

        // every 10th iteration, reduce the neighborhood range
        if (iter % 10 == 0 && R > 1) {
            R--;
        }

        alpha -= 0.01;
        iter++;
    } while (alpha > alpha_min);
}

}  // namespace machine_learning

/** @} */

using machine_learning::kohonen_som_tracer;

/** Creates a random set of points distributed *near* the circumference
 * of a circle and trains an SOM that finds that circular pattern. The
 * generating function is
 * \f{eqnarray*}{
 * r &\in& [1-\delta r, 1+\delta r)\\
 * \theta &\in& [0, 2\pi)\\
 * x &=& r\cos\theta\\
 * y &=& r\sin\theta
 * \f}
 *
 * \param[out] data matrix to store data in
 */
void test_circle(std::vector<std::valarray<double>> *data) {
    const int N = data->size();
    const double R = 0.75, dr = 0.3;
    double a_t = 0., b_t = 2.f * M_PI;  // theta random between 0 and 2*pi
    double a_r = R - dr, b_r = R + dr;  // radius random between R-dr and R+dr
    int i = 0;

#ifdef _OPENMP
#pragma omp for
#endif
    for (i = 0; i < N; i++) {
        double r = _random(a_r, b_r);      // random radius
        double theta = _random(a_t, b_t);  // random theta
        data[0][i][0] = r * cos(theta);    // convert from polar to cartesian
        data[0][i][1] = r * sin(theta);
    }
}

/** Test that creates a random set of points distributed *near* the
 * circumference of a circle and trains an SOM that finds that circular pattern.
 * The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
 * files are created to validate the execution:
 * * `test1.csv`: random test samples points with a circular pattern
 * * `w11.csv`: initial random map
 * * `w12.csv`: trained SOM map
 *
 * The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
 * the following snippet
 * ```gnuplot
 * set datafile separator ','
 * plot "test1.csv" title "original", \
 *      "w11.csv" title "w1", \
 *      "w12.csv" title "w2"
 * ```
 * ![Sample execution
 * output](https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/kohonen/test1.svg)
 */
void test1() {
    int j = 0, N = 500;
    int features = 2;
    int num_out = 50;
    std::vector<std::valarray<double>> X(N);
    std::vector<std::valarray<double>> W(num_out);
    for (int i = 0; i < std::max(num_out, N); i++) {
        // loop till max(N, num_out)
        if (i < N) {  // only add new arrays if i < N
            X[i] = std::valarray<double>(features);
        }
        if (i < num_out) {  // only add new arrays if i < num_out
            W[i] = std::valarray<double>(features);

#ifdef _OPENMP
#pragma omp for
#endif
            for (j = 0; j < features; j++) {
                // preallocate with random initial weights
                W[i][j] = _random(-1, 1);
            }
        }
    }

    test_circle(&X);  // create test data around circumference of a circle
    save_nd_data("test1.csv", X);    // save test data points
    save_nd_data("w11.csv", W);      // save initial random weights
    kohonen_som_tracer(X, &W, 0.1);  // train the SOM
    save_nd_data("w12.csv", W);      // save the resultant weights
}

/** Creates a random set of points distributed *near* the locus
 * of the [Lamniscate of
 * Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono).
 * \f{eqnarray*}{
 * \delta r &=& 0.2\\
 * \delta x &\in& [-\delta r, \delta r)\\
 * \delta y &\in& [-\delta r, \delta r)\\
 * \theta &\in& [0, \pi)\\
 * x &=& \delta x + \cos\theta\\
 * y &=& \delta y + \frac{\sin(2\theta)}{2}
 * \f}
 * \param[out] data matrix to store data in
 */
void test_lamniscate(std::vector<std::valarray<double>> *data) {
    const int N = data->size();
    const double dr = 0.2;
    int i = 0;

#ifdef _OPENMP
#pragma omp for
#endif
    for (i = 0; i < N; i++) {
        double dx = _random(-dr, dr);     // random change in x
        double dy = _random(-dr, dr);     // random change in y
        double theta = _random(0, M_PI);  // random theta
        data[0][i][0] = dx + cos(theta);  // convert from polar to cartesian
        data[0][i][1] = dy + sin(2. * theta) / 2.f;
    }
}

/** Test that creates a random set of points distributed *near* the locus
 * of the [Lamniscate of
 * Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono) and trains an SOM
 * that finds that circular pattern. The following
 * [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
 * to validate the execution:
 * * `test2.csv`: random test samples points with a lamniscate pattern
 * * `w21.csv`: initial random map
 * * `w22.csv`: trained SOM map
 *
 * The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
 * the following snippet
 * ```gnuplot
 * set datafile separator ','
 * plot "test2.csv" title "original", \
 *      "w21.csv" title "w1", \
 *      "w22.csv" title "w2"
 * ```
 * ![Sample execution
 * output](https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/kohonen/test2.svg)
 */
void test2() {
    int j = 0, N = 500;
    int features = 2;
    int num_out = 20;
    std::vector<std::valarray<double>> X(N);
    std::vector<std::valarray<double>> W(num_out);
    for (int i = 0; i < std::max(num_out, N); i++) {
        // loop till max(N, num_out)
        if (i < N) {  // only add new arrays if i < N
            X[i] = std::valarray<double>(features);
        }
        if (i < num_out) {  // only add new arrays if i < num_out
            W[i] = std::valarray<double>(features);

#ifdef _OPENMP
#pragma omp for
#endif
            for (j = 0; j < features; j++) {
                // preallocate with random initial weights
                W[i][j] = _random(-1, 1);
            }
        }
    }

    test_lamniscate(&X);              // create test data around the lamniscate
    save_nd_data("test2.csv", X);     // save test data points
    save_nd_data("w21.csv", W);       // save initial random weights
    kohonen_som_tracer(X, &W, 0.01);  // train the SOM
    save_nd_data("w22.csv", W);       // save the resultant weights
}

/** Creates a random set of points distributed in six clusters in
 * 3D space with centroids at the points
 * * \f${0.5, 0.5, 0.5}\f$
 * * \f${0.5, 0.5, -0.5}\f$
 * * \f${0.5, -0.5, 0.5}\f$
 * * \f${0.5, -0.5, -0.5}\f$
 * * \f${-0.5, 0.5, 0.5}\f$
 * * \f${-0.5, 0.5, -0.5}\f$
 * * \f${-0.5, -0.5, 0.5}\f$
 * * \f${-0.5, -0.5, -0.5}\f$
 *
 * \param[out] data matrix to store data in
 */
void test_3d_classes(std::vector<std::valarray<double>> *data) {
    const int N = data->size();
    const double R = 0.1;  // radius of cluster
    int i = 0;
    const int num_classes = 8;
    const std::array<const std::array<double, 3>, num_classes> centres = {
        // centres of each class cluster
        std::array<double, 3>({.5, .5, .5}),    // centre of class 0
        std::array<double, 3>({.5, .5, -.5}),   // centre of class 1
        std::array<double, 3>({.5, -.5, .5}),   // centre of class 2
        std::array<double, 3>({.5, -.5, -.5}),  // centre of class 3
        std::array<double, 3>({-.5, .5, .5}),   // centre of class 4
        std::array<double, 3>({-.5, .5, -.5}),  // centre of class 5
        std::array<double, 3>({-.5, -.5, .5}),  // centre of class 6
        std::array<double, 3>({-.5, -.5, -.5})  // centre of class 7
    };

#ifdef _OPENMP
#pragma omp for
#endif
    for (i = 0; i < N; i++) {
        int cls =
            std::rand() % num_classes;  // select a random class for the point

        // create random coordinates (x,y,z) around the centre of the class
        data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
        data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
        data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);

        /* The follosing can also be used
        for (int j = 0; j < 3; j++)
            data[0][i][j] = _random(centres[cls][j] - R, centres[cls][j] + R);
        */
    }
}

/** Test that creates a random set of points distributed in six clusters in
 * 3D space. The following
 * [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
 * to validate the execution:
 * * `test3.csv`: random test samples points with a circular pattern
 * * `w31.csv`: initial random map
 * * `w32.csv`: trained SOM map
 *
 * The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
 * the following snippet
 * ```gnuplot
 * set datafile separator ','
 * plot "test3.csv" title "original", \
 *      "w31.csv" title "w1", \
 *      "w32.csv" title "w2"
 * ```
 * ![Sample execution
 * output](https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/kohonen/test3.svg)
 */
void test3() {
    int j = 0, N = 200;
    int features = 3;
    int num_out = 20;
    std::vector<std::valarray<double>> X(N);
    std::vector<std::valarray<double>> W(num_out);
    for (int i = 0; i < std::max(num_out, N); i++) {
        // loop till max(N, num_out)
        if (i < N) {  // only add new arrays if i < N
            X[i] = std::valarray<double>(features);
        }
        if (i < num_out) {  // only add new arrays if i < num_out
            W[i] = std::valarray<double>(features);

#ifdef _OPENMP
#pragma omp for
#endif
            for (j = 0; j < features; j++) {
                // preallocate with random initial weights
                W[i][j] = _random(-1, 1);
            }
        }
    }

    test_3d_classes(&X);              // create test data around the lamniscate
    save_nd_data("test3.csv", X);     // save test data points
    save_nd_data("w31.csv", W);       // save initial random weights
    kohonen_som_tracer(X, &W, 0.01);  // train the SOM
    save_nd_data("w32.csv", W);       // save the resultant weights
}

/**
 * Convert clock cycle difference to time in seconds
 *
 * \param[in] start_t start clock
 * \param[in] end_t end clock
 * \returns time difference in seconds
 */
double get_clock_diff(clock_t start_t, clock_t end_t) {
    return static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC;
}

/** Main function */
int main(int argc, char **argv) {
#ifdef _OPENMP
    std::cout << "Using OpenMP based parallelization\n";
#else
    std::cout << "NOT using OpenMP based parallelization\n";
#endif

    std::srand(std::time(nullptr));

    std::clock_t start_clk = std::clock();
    test1();
    auto end_clk = std::clock();
    std::cout << "Test 1 completed in " << get_clock_diff(start_clk, end_clk)
              << " sec\n";

    start_clk = std::clock();
    test2();
    end_clk = std::clock();
    std::cout << "Test 2 completed in " << get_clock_diff(start_clk, end_clk)
              << " sec\n";

    start_clk = std::clock();
    test3();
    end_clk = std::clock();
    std::cout << "Test 3 completed in " << get_clock_diff(start_clk, end_clk)
              << " sec\n";

    std::cout
        << "(Note: Calculated times include: creating test sets, training "
           "model and writing files to disk.)\n\n";
    return 0;
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.