Large Number

/**
 * @file
 * @brief Library to perform arithmatic operations on arbitrarily large
 * numbers.
 * \author [Krishna Vedala](https://github.com/kvedala)
 */

#ifndef MATH_LARGE_NUMBER_H_
#define MATH_LARGE_NUMBER_H_
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstring>
#include <iostream>
#include <type_traits>
#include <vector>

/**
 * Store large unsigned numbers as a C++ vector
 * The class provides convenience functions to add a
 * digit to the number, perform multiplication of
 * large number with long unsigned integers.
 **/
class large_number {
 public:
    /**< initializer with value = 1 */
    large_number() { _digits.push_back(1); }

    // /**< initializer from an integer */
    // explicit large_number(uint64_t n) {
    //     uint64_t carry = n;
    //     do {
    //         add_digit(carry % 10);
    //         carry /= 10;
    //     } while (carry != 0);
    // }

    /**< initializer from an integer */
    explicit large_number(int n) {
        int carry = n;
        do {
            add_digit(carry % 10);
            carry /= 10;
        } while (carry != 0);
    }

    /**< initializer from another large_number */
    large_number(const large_number &a) : _digits(a._digits) {}

    /**< initializer from a vector */
    explicit large_number(std::vector<unsigned char> &vec) : _digits(vec) {}

    /**< initializer from a string */
    explicit large_number(char const *number_str) {
        for (size_t i = strlen(number_str); i > 0; i--) {
            char a = number_str[i - 1] - '0';
            if (a >= 0 && a <= 9)
                _digits.push_back(a);
        }
    }

    /**
     * Function to check implementation
     **/
    static bool test() {
        std::cout << "------ Checking `large_number` class implementations\t"
                  << std::endl;
        large_number a(40);
        // 1. test multiplication
        a *= 10;
        if (a != large_number(400)) {
            std::cerr << "\tFailed 1/6 (" << a << "!=400)" << std::endl;
            return false;
        }
        std::cout << "\tPassed 1/6...";
        // 2. test compound addition with integer
        a += 120;
        if (a != large_number(520)) {
            std::cerr << "\tFailed 2/6 (" << a << "!=520)" << std::endl;
            return false;
        }
        std::cout << "\tPassed 2/6...";
        // 3. test compound multiplication again
        a *= 10;
        if (a != large_number(5200)) {
            std::cerr << "\tFailed 3/6 (" << a << "!=5200)" << std::endl;
            return false;
        }
        std::cout << "\tPassed 3/6...";
        // 4. test increment (prefix)
        ++a;
        if (a != large_number(5201)) {
            std::cerr << "\tFailed 4/6 (" << a << "!=5201)" << std::endl;
            return false;
        }
        std::cout << "\tPassed 4/6...";
        // 5. test increment (postfix)
        a++;
        if (a != large_number(5202)) {
            std::cerr << "\tFailed 5/6 (" << a << "!=5202)" << std::endl;
            return false;
        }
        std::cout << "\tPassed 5/6...";
        // 6. test addition with another large number
        a = a + large_number("7000000000000000000000000000000");
        if (a != large_number("7000000000000000000000000005202")) {
            std::cerr << "\tFailed 6/6 (" << a
                      << "!=7000000000000000000000000005202)" << std::endl;
            return false;
        }
        std::cout << "\tPassed 6/6..." << std::endl;
        return true;
    }

    /**
     * add a digit at MSB to the large number
     **/
    void add_digit(unsigned int value) {
        if (value > 9) {
            std::cerr << "digit > 9!!\n";
            exit(EXIT_FAILURE);
        }

        _digits.push_back(value);
    }

    /**
     * Get number of digits in the number
     **/
    size_t num_digits() const { return _digits.size(); }

    /**
     * operator over load to access the
     * i^th digit conveniently and also
     * assign value to it
     **/
    inline unsigned char &operator[](size_t n) { return this->_digits[n]; }

    inline const unsigned char &operator[](size_t n) const {
        return this->_digits[n];
    }

    /**
     * operator overload to compare two numbers
     **/
    friend std::ostream &operator<<(std::ostream &out, const large_number &a) {
        for (size_t i = a.num_digits(); i > 0; i--)
            out << static_cast<int>(a[i - 1]);
        return out;
    }

    /**
     * operator overload to compare two numbers
     **/
    friend bool operator==(large_number const &a, large_number const &b) {
        size_t N = a.num_digits();
        if (N != b.num_digits())
            return false;
        for (size_t i = 0; i < N; i++)
            if (a[i] != b[i])
                return false;
        return true;
    }

    /**
     * operator overload to compare two numbers
     **/
    friend bool operator!=(large_number const &a, large_number const &b) {
        return !(a == b);
    }

    /**
     * operator overload to increment (prefix)
     **/
    large_number &operator++() {
        (*this) += 1;
        return *this;
    }

    /**
     * operator overload to increment (postfix)
     **/
    large_number &operator++(int) {
        static large_number tmp(_digits);
        ++(*this);
        return tmp;
    }

    /**
     * operator overload to add
     **/
    large_number &operator+=(large_number n) {
        // if adding with another large_number
        large_number *b = reinterpret_cast<large_number *>(&n);
        const size_t max_L = std::max(this->num_digits(), b->num_digits());
        unsigned int carry = 0;
        size_t i;
        for (i = 0; i < max_L || carry != 0; i++) {
            if (i < b->num_digits())
                carry += (*b)[i];
            if (i < this->num_digits())
                carry += (*this)[i];
            if (i < this->num_digits())
                (*this)[i] = carry % 10;
            else
                this->add_digit(carry % 10);
            carry /= 10;
        }
        return *this;
    }

    large_number &operator+=(int n) { return (*this) += large_number(n); }
    // large_number &operator+=(uint64_t n) { return (*this) += large_number(n);
    // }

    /**
     * operator overload to perform addition
     **/
    template <class T>
    friend large_number &operator+(const large_number &a, const T &b) {
        static large_number c = a;
        c += b;
        return c;
    }

    /**
     * assignment operator
     **/
    large_number &operator=(const large_number &b) {
        this->_digits = b._digits;
        return *this;
    }

    /**
     * operator overload to increment
     **/
    template <class T>
    large_number &operator*=(const T n) {
        static_assert(std::is_integral<T>::value,
                      "Must be integer addition unsigned integer types.");
        this->multiply(n);
        return *this;
    }

    /**
     * returns i^th digit as an ASCII character
     **/
    char digit_char(size_t i) const {
        return _digits[num_digits() - i - 1] + '0';
    }

 private:
    /**
     * multiply large number with another integer and
     * store the result in the same large number
     **/
    template <class T>
    void multiply(const T n) {
        static_assert(std::is_integral<T>::value,
                      "Can only have integer types.");
        // assert(!(std::is_signed<T>::value)); //, "Implemented only for
        // unsigned integer types.");

        size_t i;
        uint64_t carry = 0, temp;
        for (i = 0; i < this->num_digits(); i++) {
            temp = static_cast<uint64_t>((*this)[i]) * n;
            temp += carry;
            if (temp < 10) {
                carry = 0;
            } else {
                carry = temp / 10;
                temp = temp % 10;
            }
            (*this)[i] = temp;
        }

        while (carry != 0) {
            this->add_digit(carry % 10);
            carry /= 10;
        }
    }

    std::vector<unsigned char>
        _digits; /**< where individual digits are stored */
};

#endif  // MATH_LARGE_NUMBER_H_
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.