Linear Recurrence Matrix

/**
 * @brief Evaluate recurrence relation using [matrix
 * exponentiation](https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/).
 * @details
 * Given a recurrence relation; evaluate the value of nth term.
 * For e.g., For fibonacci series, recurrence series is `f(n) = f(n-1) + f(n-2)`
 * where `f(0) = 0` and `f(1) = 1`.
 * Note that the method used only demonstrates
 * recurrence relation with one variable (n), unlike `nCr` problem, since it has
 * two (n, r)
 *
 * ### Algorithm
 * This problem can be solved using matrix exponentiation method.
 * @see here for simple [number exponentiation
 * algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp)
 * or [explaination
 * here](https://en.wikipedia.org/wiki/Exponentiation_by_squaring).
 * @author [Ashish Daulatabad](https://github.com/AshishYUO)
 */
#include <cassert>   /// for assert
#include <iostream>  /// for IO operations
#include <vector>    /// for std::vector STL

/**
 * @namespace math
 * @brief Mathematical algorithms
 */
namespace math {
/**
 * @namespace linear_recurrence_matrix
 * @brief Functions for [Linear Recurrence
 * Matrix](https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/)
 * implementation.
 */
namespace linear_recurrence_matrix {
/**
 * @brief Implementation of matrix multiplication
 * @details Multiplies matrix A and B, given total columns in A are equal to
 * total given rows in column B
 * @tparam T template type for integer as well as floating values, default is
 * long long int
 * @param _mat_a first matrix of size n * m
 * @param _mat_b second matrix of size m * k
 * @returns `_mat_c` resultant matrix of size n * k
 * Complexity: `O(n*m*k)`
 * @note The complexity in this case will be O(n^3) due to the nature of the
 * problem. We'll be multiplying the matrix with itself most of the time.
 */
template <typename T = int64_t>
std::vector<std::vector<T>> matrix_multiplication(
    const std::vector<std::vector<T>>& _mat_a,
    const std::vector<std::vector<T>>& _mat_b, const int64_t mod = 1000000007) {
    // assert that columns in `_mat_a` and rows in `_mat_b` are equal
    assert(_mat_a[0].size() == _mat_b.size());
    std::vector<std::vector<T>> _mat_c(_mat_a.size(),
                                       std::vector<T>(_mat_b[0].size(), 0));
    /**
     * Actual matrix multiplication.
     */
    for (uint32_t i = 0; i < _mat_a.size(); ++i) {
        for (uint32_t j = 0; j < _mat_b[0].size(); ++j) {
            for (uint32_t k = 0; k < _mat_b.size(); ++k) {
                _mat_c[i][j] =
                    (_mat_c[i][j] % mod +
                     (_mat_a[i][k] % mod * _mat_b[k][j] % mod) % mod) %
                    mod;
            }
        }
    }
    return _mat_c;
}
/**
 * @brief Returns whether matrix `mat` is a [zero
 * matrix.](https://en.wikipedia.org/wiki/Zero_matrix)
 * @tparam T template type for integer as well as floating values, default is
 * long long int
 * @param _mat A matrix
 * @returns true if it is a zero matrix else false
 */
template <typename T = int64_t>
bool is_zero_matrix(const std::vector<std::vector<T>>& _mat) {
    for (uint32_t i = 0; i < _mat.size(); ++i) {
        for (uint32_t j = 0; j < _mat[i].size(); ++j) {
            if (_mat[i][j] != 0) {
                return false;
            }
        }
    }
    return true;
}

/**
 * @brief Implementation of Matrix exponentiation
 * @details returns the matrix exponentiation `(B^n)` in `k^3 * O(log2(power))`
 * time, where `k` is the size of matrix (k by k).
 * @tparam T template type for integer as well as floating values, default is
 * long long int
 * @param _mat matrix for exponentiation
 * @param power the exponent value
 * @returns the matrix _mat to the power `power (_mat^power)`
 */
template <typename T = int64_t>
std::vector<std::vector<T>> matrix_exponentiation(
    std::vector<std::vector<T>> _mat, uint64_t power,
    const int64_t mod = 1000000007) {
    /**
     * Initializing answer as identity matrix. For simple binary
     * exponentiation reference, [see
     * here](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp)
     */
    if (is_zero_matrix(_mat)) {
        return _mat;
    }

    std::vector<std::vector<T>> _mat_answer(_mat.size(),
                                            std::vector<T>(_mat.size(), 0));

    for (uint32_t i = 0; i < _mat.size(); ++i) {
        _mat_answer[i][i] = 1;
    }
    // exponentiation algorithm here.
    while (power > 0) {
        if (power & 1) {
            _mat_answer = matrix_multiplication(_mat_answer, _mat, mod);
        }
        power >>= 1;
        _mat = matrix_multiplication(_mat, _mat, mod);
    }

    return _mat_answer;
}

/**
 * @brief Implementation of nth recurrence series.
 * @details Returns the nth term in the recurrence series.
 * Note that the function assumes definition of base cases from `n = 0`
 * (e.g., for fibonacci, `f(0)` has a defined value `0`)
 * @tparam T template type for integer as well as floating values, default is
 * long long int
 * @param _mat [square matrix](https://en.m.wikipedia.org/wiki/Square_matrix)
 * that evaluates the nth term using exponentiation
 * @param _base_cases 2D array of dimension `1*n` containing values which are
 * defined for some n (e.g., for fibonacci, `f(0)` and `f(1)` are defined, and
 * `f(n)` where `n > 1` is evaluated on previous two values)
 * @param nth_term the nth term of recurrence relation
 * @param constant_or_sum_included whether the recurrence relation has a
 * constant value or is evaluating sum of first n terms of the recurrence.
 * @returns the nth term of the recurrence relation in `O(k^3. log(n))`, where k
 * is number of rows and columns in `_mat` and `n` is the value of `nth_term`
 * If constant_or_sum_included is true, returns the sum of first n terms in
 * recurrence series
 */
template <typename T = int64_t>
T get_nth_term_of_recurrence_series(
    const std::vector<std::vector<T>>& _mat,
    const std::vector<std::vector<T>>& _base_cases, uint64_t nth_term,
    bool constant_or_sum_included = false) {
    assert(_mat.size() == _base_cases.back().size());

    /**
     * If nth term is a base case, then return base case directly.
     */

    if (nth_term < _base_cases.back().size() - constant_or_sum_included) {
        return _base_cases.back()[nth_term - constant_or_sum_included];
    } else {
        /**
         * Else evaluate the expression, so multiplying _mat to itself (n -
         * base_cases.length + 1 + constant_or_sum_included) times.
         */
        std::vector<std::vector<T>> _res_matrix =
            matrix_exponentiation(_mat, nth_term - _base_cases.back().size() +
                                            1 + constant_or_sum_included);

        /**
         * After matrix exponentiation, multiply with the base case to evaluate
         * the answer. The answer is always at the end of the array.
         */
        std::vector<std::vector<T>> _res =
            matrix_multiplication(_base_cases, _res_matrix);

        return _res.back().back();
    }
}
}  // namespace linear_recurrence_matrix
}  // namespace math

/**
 * @brief Self test-implementations
 * @returns void
 */
static void test() {
    /*
     * Example 1: [Fibonacci
     * series](https://en.wikipedia.org/wiki/Fibonacci_number);
     *
     * [fn-2    fn-1]  [0      1]  ==   [fn-1   (fn-2 + fn-1)] => [fn-1   fn]
     *                 [1      1]
     *
     * Let A = [fn-2   fn-1], and B = [0   1]
     *                                [1   1],
     *
     * Since, A.B....(n-1 times) = [fn-1   fn]
     * we can multiply B with itself n-1 times to obtain the required value
     */
    std::vector<std::vector<int64_t>> fibonacci_matrix = {{0, 1}, {1, 1}},
                                      fib_base_case = {{0, 1}};

    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               fibonacci_matrix, fib_base_case, 11) == 89LL);
    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               fibonacci_matrix, fib_base_case, 39) == 63245986LL);
    /*
     * Example 2: [Tribonacci series](https://oeis.org/A000073)
     *                    [0   0   1]
     * [fn-3  fn-2  fn-1] [1   0   1]  =  [(fn-2)  (fn-1)  (fn-3 + fn-2 + fn-1)]
     *                    [0   1   1]
     *                                 => [fn-2     fn-1    fn]
     *
     *                                       [0   0   1]
     * Let A = [fn-3   fn-2   fn-1], and B = [1   0   1]
     *                                       [0   1   1]
     *
     * Since, A.B....(n-2 times) = [fn-2  fn-1   fn]
     * we will have multiply B with itself n-2 times to obtain the required
     * value ()
     */

    std::vector<std::vector<int64_t>> tribonacci = {{0, 0, 1},
                                                    {1, 0, 1},
                                                    {0, 1, 1}},
                                      trib_base_case = {
                                          {0, 0, 1}};  // f0 = 0, f1 = 0, f2 = 1

    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               tribonacci, trib_base_case, 11) == 149LL);
    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               tribonacci, trib_base_case, 36) == 615693474LL);

    /*
     * Example 3: [Pell numbers](https://oeis.org/A000129)
     * `f(n)  = 2* f(n-1) + f(n-2); f(0) = f(1) = 2`
     *
     * [fn-2  fn-1] [0   1]  =  [(fn-1)  fn-2 + 2*fn-1)]
     *              [1   2]
     *                       => [fn-1     fn]
     *
     * Let A = [fn-2  fn-1], and B = [0   1]
     *                               [1   2]
     */

    std::vector<std::vector<int64_t>> pell_recurrence = {{0, 1}, {1, 2}},
                                      pell_base_case = {
                                          {2, 2}};  // `f0 = 2, f1 = 2`

    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               pell_recurrence, pell_base_case, 15) == 551614LL);
    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               pell_recurrence, pell_base_case, 23) == 636562078LL);

    /*
     * Example 4: Custom recurrence relation:
     * Now the recurrence is of the form `a*f(n-1) + b*(fn-2) + ... + c`
     * where `c` is the constant
     * `f(n)  = 2* f(n-1) + f(n-2) + 7; f(0) = f(1) = 2, c = 7`
     *
     *                   [1   0   1]
     * [7,  fn-2,  fn-1] [0   0   1]
     *                   [0   1   2]
     * =  [7,  (fn-1),  fn-2 + 2*fn-1) + 7]
     *
     * => [7,    fn-1,     fn]
     * :: Series will be 2, 2, 13, 35, 90, 222, 541, 1311, 3170, 7658, 18493,
     * 44651, 107802, 260262, 628333, 1516935, 362210, 8841362, 21344941,
     * 51531251
     *
     * Let A = [7,  fn-2,  fn-1], and B = [1   0   1]
     *                                    [0   0   1]
     *                                    [0   1   2]
     */

    std::vector<std::vector<int64_t>>
        custom_recurrence = {{1, 0, 1}, {0, 0, 1}, {0, 1, 2}},
        custom_base_case = {{7, 2, 2}};  // `c = 7, f0 = 2, f1 = 2`

    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               custom_recurrence, custom_base_case, 10, 1) == 18493LL);
    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               custom_recurrence, custom_base_case, 19, 1) == 51531251LL);

    /*
     * Example 5: Sum fibonacci sequence
     * The following matrix evaluates the sum of first n fibonacci terms in
     * O(27. log2(n)) time.
     * `f(n) = f(n-1) + f(n-2); f(0) = 0, f(1) = 1`
     *
     *                           [1   0   0]
     * [s(f, n-1),  fn-2,  fn-1] [1   0   1]
     *                           [1   1   1]
     *   => [(s(f, n-1)+f(n-2)+f(n-1)), (fn-1),  f(n-2)+f(n-1)]
     *
     *   => [s(f, n-1)+f(n),    fn-1,     fn]
     *
     *   => [s(f, n),    fn-1,     fn]
     *
     * Sum of first 20 fibonacci series:
     * 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583,
     * 4180, 6764
     *          f0  f1  s(f,1)
     * Let A = [0    1    1], and B = [0   1   1]
     *                                [1   1   1]
     *                                [0   0   1]
     */

    std::vector<std::vector<int64_t>> sum_fibo_recurrence = {{0, 1, 1},
                                                             {1, 1, 1},
                                                             {0, 0, 1}},
                                      sum_fibo_base_case = {
                                          {0, 1, 1}};  // `f0 = 0, f1 = 1`

    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               sum_fibo_recurrence, sum_fibo_base_case, 13, 1) == 609LL);
    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               sum_fibo_recurrence, sum_fibo_base_case, 16, 1) == 2583LL);
    /*
     * Example 6: [Tribonacci sum series](https://oeis.org/A000073)
     *                               [0   0   1   1]
     * [fn-3  fn-2  fn-1  s(f, n-1)] [1   0   1   1]
     *                               [0   1   1   1]
     *                               [0   0   0   1]
     *
     * = [fn-2, fn-1, fn-3 + fn-2 + fn-1, (fn-3 + fn-2 + fn-1 + s(f, n-1))]
     *
     * => [fn-2, fn-1, fn,  fn + s(f, n-1)]
     *
     * => [fn-2, fn-1, fn, s(f, n)]
     *
     * Sum of the series is: 0, 0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600,
     * 1104, 2031, 3736, 6872, 12640, 23249, 42762
     *
     * Let A = [fn-3   fn-2   fn-1   s(f, n-1)], and
     *     [0   0   1   1]
     * B = [1   0   1   1]
     *     [0   1   1   1]
     *     [0   0   0   1]
     *
     * Since, A.B....(n-2 times) = [fn-2  fn-1   fn]
     * we will have multiply B with itself n-2 times to obtain the required
     * value
     */

    std::vector<std::vector<int64_t>> tribonacci_sum = {{0, 0, 1, 1},
                                                        {1, 0, 1, 1},
                                                        {0, 1, 1, 1},
                                                        {0, 0, 0, 1}},
                                      trib_sum_base_case = {{0, 0, 1, 1}};
    // `f0 = 0, f1 = 0, f2 = 1, s = 1`

    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               tribonacci_sum, trib_sum_base_case, 18, 1) == 23249LL);
    assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
               tribonacci_sum, trib_sum_base_case, 19, 1) == 42762LL);
}

/**
 * @brief Main function
 * @returns 0 on exit
 */
int main() {
    test();  // run self-test implementations
    return 0;
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.