package com.thealgorithms.dynamicprogramming;
/*
 * Problem Statement: - 
 * Find Longest Alternating Subsequence
 * A sequence {x1, x2, .. xn} is alternating sequence if its elements satisfy one of the following relations : 
   x1 < x2 > x3 < x4 > x5 < β¦. xn or 
   x1 > x2 < x3 > x4 < x5 > β¦. xn
 */
public class LongestAlternatingSubsequence {
    /* Function to return longest alternating subsequence length*/
    static int AlternatingLength(int arr[], int n) {
        /*
		las[i][0] = Length of the longest
			alternating subsequence ending at
			index i and last element is
			greater than its previous element
		las[i][1] = Length of the longest
			alternating subsequence ending at
			index i and last element is
			smaller than its previous
			element 
         */
        int las[][] = new int[n][2]; // las = LongestAlternatingSubsequence
        for (int i = 0; i < n; i++) {
            las[i][0] = las[i][1] = 1;
        }
        int result = 1; // Initialize result
        /* Compute values in bottom up manner */
        for (int i = 1; i < n; i++) {
            /* Consider all elements as previous of arr[i]*/
            for (int j = 0; j < i; j++) {
                /* If arr[i] is greater, then check with las[j][1] */
                if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) {
                    las[i][0] = las[j][1] + 1;
                }
                /* If arr[i] is smaller, then check with las[j][0]*/
                if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) {
                    las[i][1] = las[j][0] + 1;
                }
            }
            /* Pick maximum of both values at index i */
            if (result < Math.max(las[i][0], las[i][1])) {
                result = Math.max(las[i][0], las[i][1]);
            }
        }
        return result;
    }
    public static void main(String[] args) {
        int arr[] = {10, 22, 9, 33, 49, 50, 31, 60};
        int n = arr.length;
        System.out.println("Length of Longest " + "alternating subsequence is " + AlternatingLength(arr, n));
    }
}
Β© Alger 2022