Matching Min Vertex Cover

"""
* Author: Manuel Di Lullo (https://github.com/manueldilullo)
* Description: Approximization algorithm for minimum vertex cover problem.
               Matching Approach. Uses graphs represented with an adjacency list

URL: https://mathworld.wolfram.com/MinimumVertexCover.html
URL: https://www.princeton.edu/~aaa/Public/Teaching/ORF523/ORF523_Lec6.pdf
"""


def matching_min_vertex_cover(graph: dict) -> set:
    """
    APX Algorithm for min Vertex Cover using Matching Approach
    @input: graph (graph stored in an adjacency list where each vertex
            is represented as an integer)
    @example:
    >>> graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
    >>> matching_min_vertex_cover(graph)
    {0, 1, 2, 4}
    """
    # chosen_vertices = set of chosen vertices
    chosen_vertices = set()
    # edges = list of graph's edges
    edges = get_edges(graph)

    # While there are still elements in edges list, take an arbitrary edge
    # (from_node, to_node) and add his extremity to chosen_vertices and then
    # remove all arcs adjacent to the from_node and to_node
    while edges:
        from_node, to_node = edges.pop()
        chosen_vertices.add(from_node)
        chosen_vertices.add(to_node)
        for edge in edges.copy():
            if from_node in edge or to_node in edge:
                edges.discard(edge)
    return chosen_vertices


def get_edges(graph: dict) -> set:
    """
    Return a set of couples that represents all of the edges.
    @input: graph (graph stored in an adjacency list where each vertex is
            represented as an integer)
    @example:
    >>> graph = {0: [1, 3], 1: [0, 3], 2: [0, 3], 3: [0, 1, 2]}
    >>> get_edges(graph)
    {(0, 1), (3, 1), (0, 3), (2, 0), (3, 0), (2, 3), (1, 0), (3, 2), (1, 3)}
    """
    edges = set()
    for from_node, to_nodes in graph.items():
        for to_node in to_nodes:
            edges.add((from_node, to_node))
    return edges


if __name__ == "__main__":
    import doctest

    doctest.testmod()

    # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
    # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.