Matrix Util

package com.thealgorithms.maths;

import java.math.BigDecimal;
import java.util.Arrays;
import java.util.Objects;
import java.util.Optional;
import java.util.function.BiFunction;
import java.util.stream.IntStream;

/**
 * @author: caos321
 * @date: 31 October 2021 (Sunday)
 */
public class MatrixUtil {

    public static boolean isValid(final BigDecimal[][] matrix) {
        return matrix != null && matrix.length > 0 && matrix[0].length > 0;
    }

    public static boolean hasEqualSizes(final BigDecimal[][] matrix1, final BigDecimal[][] matrix2) {
        return isValid(matrix1) && isValid(matrix2)
                && matrix1.length == matrix2.length
                && matrix1[0].length == matrix2[0].length;
    }

    public static boolean canMultiply(final BigDecimal[][] matrix1, final BigDecimal[][] matrix2) {
        return isValid(matrix1) && isValid(matrix2)
                && matrix1[0].length == matrix2.length;
    }

    public static Optional<BigDecimal[][]> operate(final BigDecimal[][] matrix1,
            final BigDecimal[][] matrix2,
            final BiFunction<BigDecimal, BigDecimal, BigDecimal> operation) {
        if (!hasEqualSizes(matrix1, matrix2)) {
            return Optional.empty();
        }

        final int rowSize = matrix1.length;
        final int columnSize = matrix1[0].length;

        final BigDecimal[][] result = new BigDecimal[rowSize][columnSize];

        IntStream.range(0, rowSize).forEach(rowIndex
                -> IntStream.range(0, columnSize).forEach(columnIndex -> {
                    final BigDecimal value1 = matrix1[rowIndex][columnIndex];
                    final BigDecimal value2 = matrix2[rowIndex][columnIndex];

                    result[rowIndex][columnIndex] = operation.apply(value1, value2);
                }));

        return Optional.of(result);
    }

    public static Optional<BigDecimal[][]> add(final BigDecimal[][] matrix1, final BigDecimal[][] matrix2) {
        return operate(matrix1, matrix2, BigDecimal::add);
    }

    public static Optional<BigDecimal[][]> subtract(final BigDecimal[][] matrix1, final BigDecimal[][] matrix2) {
        return operate(matrix1, matrix2, BigDecimal::subtract);
    }

    public static Optional<BigDecimal[][]> multiply(final BigDecimal[][] matrix1, final BigDecimal[][] matrix2) {
        if (!canMultiply(matrix1, matrix2)) {
            return Optional.empty();
        }

        final int size = matrix1[0].length;

        final int matrix1RowSize = matrix1.length;
        final int matrix2ColumnSize = matrix2[0].length;

        final BigDecimal[][] result = new BigDecimal[matrix1RowSize][matrix2ColumnSize];

        IntStream.range(0, matrix1RowSize).forEach(rowIndex
                -> IntStream.range(0, matrix2ColumnSize).forEach(columnIndex
                        -> result[rowIndex][columnIndex] = IntStream.range(0, size).mapToObj(index -> {
                    final BigDecimal value1 = matrix1[rowIndex][index];
                    final BigDecimal value2 = matrix2[index][columnIndex];

                    return value1.multiply(value2);
                })
                        .reduce(BigDecimal.ZERO, BigDecimal::add)
                )
        );

        return Optional.of(result);
    }

    public static void assertThat(final BigDecimal[][] actual, final BigDecimal[][] expected) {
        if (!Objects.deepEquals(actual, expected)) {
            throw new AssertionError(String.format(
                    "expected=%s but was actual=%s",
                    Arrays.deepToString(expected),
                    Arrays.deepToString(actual)
            ));
        }
    }

    public static void main(final String[] args) {
        {
            final BigDecimal[][] matrix1 = {
                {new BigDecimal(3), new BigDecimal(2)},
                {new BigDecimal(0), new BigDecimal(1)},};

            final BigDecimal[][] matrix2 = {
                {new BigDecimal(1), new BigDecimal(3)},
                {new BigDecimal(2), new BigDecimal(0)},};

            final BigDecimal[][] actual = add(matrix1, matrix2)
                    .orElseThrow(() -> new AssertionError("Could not compute matrix!"));

            final BigDecimal[][] expected = {
                {new BigDecimal(4), new BigDecimal(5)},
                {new BigDecimal(2), new BigDecimal(1)}
            };

            assertThat(actual, expected);
        }

        {
            final BigDecimal[][] matrix1 = {
                {new BigDecimal(1), new BigDecimal(4)},
                {new BigDecimal(5), new BigDecimal(6)},};

            final BigDecimal[][] matrix2 = {
                {new BigDecimal(2), new BigDecimal(0)},
                {new BigDecimal(-2), new BigDecimal(-3)},};

            final BigDecimal[][] actual = subtract(matrix1, matrix2)
                    .orElseThrow(() -> new AssertionError("Could not compute matrix!"));

            final BigDecimal[][] expected = {
                {new BigDecimal(-1), new BigDecimal(4)},
                {new BigDecimal(7), new BigDecimal(9)}
            };

            assertThat(actual, expected);
        }

        {
            final BigDecimal[][] matrix1 = {
                {new BigDecimal(1), new BigDecimal(2), new BigDecimal(3)},
                {new BigDecimal(4), new BigDecimal(5), new BigDecimal(6)},
                {new BigDecimal(7), new BigDecimal(8), new BigDecimal(9)}
            };

            final BigDecimal[][] matrix2 = {
                {new BigDecimal(1), new BigDecimal(2)},
                {new BigDecimal(3), new BigDecimal(4)},
                {new BigDecimal(5), new BigDecimal(6)}
            };

            final BigDecimal[][] actual = multiply(matrix1, matrix2)
                    .orElseThrow(() -> new AssertionError("Could not compute matrix!"));

            final BigDecimal[][] expected = {
                {new BigDecimal(22), new BigDecimal(28)},
                {new BigDecimal(49), new BigDecimal(64)},
                {new BigDecimal(76), new BigDecimal(100)}
            };

            assertThat(actual, expected);
        }
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.