Min Heap

# Min heap data structure
# with decrease key functionality - in O(log(n)) time


class Node:
    def __init__(self, name, val):
        self.name = name
        self.val = val

    def __str__(self):
        return f"{self.__class__.__name__}({self.name}, {self.val})"

    def __lt__(self, other):
        return self.val < other.val


class MinHeap:
    """
    >>> r = Node("R", -1)
    >>> b = Node("B", 6)
    >>> a = Node("A", 3)
    >>> x = Node("X", 1)
    >>> e = Node("E", 4)
    >>> print(b)
    Node(B, 6)
    >>> myMinHeap = MinHeap([r, b, a, x, e])
    >>> myMinHeap.decrease_key(b, -17)
    >>> print(b)
    Node(B, -17)
    >>> print(myMinHeap["B"])
    -17
    """

    def __init__(self, array):
        self.idx_of_element = {}
        self.heap_dict = {}
        self.heap = self.build_heap(array)

    def __getitem__(self, key):
        return self.get_value(key)

    def get_parent_idx(self, idx):
        return (idx - 1) // 2

    def get_left_child_idx(self, idx):
        return idx * 2 + 1

    def get_right_child_idx(self, idx):
        return idx * 2 + 2

    def get_value(self, key):
        return self.heap_dict[key]

    def build_heap(self, array):
        lastIdx = len(array) - 1
        startFrom = self.get_parent_idx(lastIdx)

        for idx, i in enumerate(array):
            self.idx_of_element[i] = idx
            self.heap_dict[i.name] = i.val

        for i in range(startFrom, -1, -1):
            self.sift_down(i, array)
        return array

    # this is min-heapify method
    def sift_down(self, idx, array):
        while True:
            l = self.get_left_child_idx(idx)  # noqa: E741
            r = self.get_right_child_idx(idx)

            smallest = idx
            if l < len(array) and array[l] < array[idx]:
                smallest = l
            if r < len(array) and array[r] < array[smallest]:
                smallest = r

            if smallest != idx:
                array[idx], array[smallest] = array[smallest], array[idx]
                (
                    self.idx_of_element[array[idx]],
                    self.idx_of_element[array[smallest]],
                ) = (
                    self.idx_of_element[array[smallest]],
                    self.idx_of_element[array[idx]],
                )
                idx = smallest
            else:
                break

    def sift_up(self, idx):
        p = self.get_parent_idx(idx)
        while p >= 0 and self.heap[p] > self.heap[idx]:
            self.heap[p], self.heap[idx] = self.heap[idx], self.heap[p]
            self.idx_of_element[self.heap[p]], self.idx_of_element[self.heap[idx]] = (
                self.idx_of_element[self.heap[idx]],
                self.idx_of_element[self.heap[p]],
            )
            idx = p
            p = self.get_parent_idx(idx)

    def peek(self):
        return self.heap[0]

    def remove(self):
        self.heap[0], self.heap[-1] = self.heap[-1], self.heap[0]
        self.idx_of_element[self.heap[0]], self.idx_of_element[self.heap[-1]] = (
            self.idx_of_element[self.heap[-1]],
            self.idx_of_element[self.heap[0]],
        )

        x = self.heap.pop()
        del self.idx_of_element[x]
        self.sift_down(0, self.heap)
        return x

    def insert(self, node):
        self.heap.append(node)
        self.idx_of_element[node] = len(self.heap) - 1
        self.heap_dict[node.name] = node.val
        self.sift_up(len(self.heap) - 1)

    def is_empty(self):
        return True if len(self.heap) == 0 else False

    def decrease_key(self, node, newValue):
        assert (
            self.heap[self.idx_of_element[node]].val > newValue
        ), "newValue must be less that current value"
        node.val = newValue
        self.heap_dict[node.name] = newValue
        self.sift_up(self.idx_of_element[node])


# USAGE

r = Node("R", -1)
b = Node("B", 6)
a = Node("A", 3)
x = Node("X", 1)
e = Node("E", 4)

# Use one of these two ways to generate Min-Heap

# Generating Min-Heap from array
myMinHeap = MinHeap([r, b, a, x, e])

# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)

# Before
print("Min Heap - before decrease key")
for i in myMinHeap.heap:
    print(i)

print("Min Heap - After decrease key of node [B -> -17]")
myMinHeap.decrease_key(b, -17)

# After
for i in myMinHeap.heap:
    print(i)

if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.