Minimum Spanning Tree

use super::DisjointSetUnion;

#[derive(Debug)]
pub struct Edge {
    source: i64,
    destination: i64,
    cost: i64,
}

impl PartialEq for Edge {
    fn eq(&self, other: &Self) -> bool {
        self.source == other.source
            && self.destination == other.destination
            && self.cost == other.cost
    }
}

impl Eq for Edge {}

impl Edge {
    fn new(source: i64, destination: i64, cost: i64) -> Self {
        Self {
            source,
            destination,
            cost,
        }
    }
}

pub fn kruskal(mut edges: Vec<Edge>, number_of_vertices: i64) -> (i64, Vec<Edge>) {
    let mut dsu = DisjointSetUnion::new(number_of_vertices as usize);

    edges.sort_unstable_by(|a, b| a.cost.cmp(&b.cost));
    let mut total_cost: i64 = 0;
    let mut final_edges: Vec<Edge> = Vec::new();
    let mut merge_count: i64 = 0;
    for edge in edges.iter() {
        if merge_count >= number_of_vertices - 1 {
            break;
        }

        let source: i64 = edge.source;
        let destination: i64 = edge.destination;
        if dsu.merge(source as usize, destination as usize) < std::usize::MAX {
            merge_count += 1;
            let cost: i64 = edge.cost;
            total_cost += cost;
            let final_edge: Edge = Edge::new(source, destination, cost);
            final_edges.push(final_edge);
        }
    }
    (total_cost, final_edges)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_seven_vertices_eleven_edges() {
        let mut edges: Vec<Edge> = Vec::new();
        edges.push(Edge::new(0, 1, 7));
        edges.push(Edge::new(0, 3, 5));
        edges.push(Edge::new(1, 2, 8));
        edges.push(Edge::new(1, 3, 9));
        edges.push(Edge::new(1, 4, 7));
        edges.push(Edge::new(2, 4, 5));
        edges.push(Edge::new(3, 4, 15));
        edges.push(Edge::new(3, 5, 6));
        edges.push(Edge::new(4, 5, 8));
        edges.push(Edge::new(4, 6, 9));
        edges.push(Edge::new(5, 6, 11));

        let number_of_vertices: i64 = 7;

        let expected_total_cost = 39;
        let mut expected_used_edges: Vec<Edge> = Vec::new();
        expected_used_edges.push(Edge::new(0, 3, 5));
        expected_used_edges.push(Edge::new(2, 4, 5));
        expected_used_edges.push(Edge::new(3, 5, 6));
        expected_used_edges.push(Edge::new(0, 1, 7));
        expected_used_edges.push(Edge::new(1, 4, 7));
        expected_used_edges.push(Edge::new(4, 6, 9));

        let (actual_total_cost, actual_final_edges) = kruskal(edges, number_of_vertices);

        assert_eq!(actual_total_cost, expected_total_cost);
        assert_eq!(actual_final_edges, expected_used_edges);
    }

    #[test]
    fn test_ten_vertices_twenty_edges() {
        let mut edges: Vec<Edge> = Vec::new();
        edges.push(Edge::new(0, 1, 3));
        edges.push(Edge::new(0, 3, 6));
        edges.push(Edge::new(0, 4, 9));
        edges.push(Edge::new(1, 2, 2));
        edges.push(Edge::new(1, 3, 4));
        edges.push(Edge::new(1, 4, 9));
        edges.push(Edge::new(2, 3, 2));
        edges.push(Edge::new(2, 5, 8));
        edges.push(Edge::new(2, 6, 9));
        edges.push(Edge::new(3, 6, 9));
        edges.push(Edge::new(4, 5, 8));
        edges.push(Edge::new(4, 9, 18));
        edges.push(Edge::new(5, 6, 7));
        edges.push(Edge::new(5, 8, 9));
        edges.push(Edge::new(5, 9, 10));
        edges.push(Edge::new(6, 7, 4));
        edges.push(Edge::new(6, 8, 5));
        edges.push(Edge::new(7, 8, 1));
        edges.push(Edge::new(7, 9, 4));
        edges.push(Edge::new(8, 9, 3));

        let number_of_vertices: i64 = 10;

        let expected_total_cost = 38;
        let mut expected_used_edges = Vec::new();
        expected_used_edges.push(Edge::new(7, 8, 1));
        expected_used_edges.push(Edge::new(1, 2, 2));
        expected_used_edges.push(Edge::new(2, 3, 2));
        expected_used_edges.push(Edge::new(0, 1, 3));
        expected_used_edges.push(Edge::new(8, 9, 3));
        expected_used_edges.push(Edge::new(6, 7, 4));
        expected_used_edges.push(Edge::new(5, 6, 7));
        expected_used_edges.push(Edge::new(2, 5, 8));
        expected_used_edges.push(Edge::new(4, 5, 8));

        let (actual_total_cost, actual_final_edges) = kruskal(edges, number_of_vertices);

        assert_eq!(actual_total_cost, expected_total_cost);
        assert_eq!(actual_final_edges, expected_used_edges);
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.