Monte Carlo Tree Search

package com.thealgorithms.searches;

import java.util.Collections;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Random;

/**
 * Monte Carlo Tree Search (MCTS) is a heuristic search algorithm used in
 * decition taking problems especially games.
 *
 * See more: https://en.wikipedia.org/wiki/Monte_Carlo_tree_search,
 * https://www.baeldung.com/java-monte-carlo-tree-search
 */
public class MonteCarloTreeSearch {

    public class Node {

        Node parent;
        ArrayList<Node> childNodes;
        boolean isPlayersTurn; // True if it is the player's turn.
        boolean playerWon; // True if the player won; false if the opponent won.
        int score;
        int visitCount;

        public Node() {
        }

        public Node(Node parent, boolean isPlayersTurn) {
            this.parent = parent;
            childNodes = new ArrayList<>();
            this.isPlayersTurn = isPlayersTurn;
            playerWon = false;
            score = 0;
            visitCount = 0;
        }
    }

    static final int WIN_SCORE = 10;
    static final int TIME_LIMIT = 500; // Time the algorithm will be running for (in milliseconds).

    public static void main(String[] args) {
        MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();

        mcts.monteCarloTreeSearch(mcts.new Node(null, true));
    }

    /**
     * Explores a game tree using Monte Carlo Tree Search (MCTS) and returns the
     * most promising node.
     *
     * @param rootNode Root node of the game tree.
     * @return The most promising child of the root node.
     */
    public Node monteCarloTreeSearch(Node rootNode) {
        Node winnerNode;
        double timeLimit;

        // Expand the root node.
        addChildNodes(rootNode, 10);

        timeLimit = System.currentTimeMillis() + TIME_LIMIT;

        // Explore the tree until the time limit is reached.
        while (System.currentTimeMillis() < timeLimit) {
            Node promisingNode;

            // Get a promising node using UCT.
            promisingNode = getPromisingNode(rootNode);

            // Expand the promising node.
            if (promisingNode.childNodes.size() == 0) {
                addChildNodes(promisingNode, 10);
            }

            simulateRandomPlay(promisingNode);
        }

        winnerNode = getWinnerNode(rootNode);
        printScores(rootNode);
        System.out.format("\nThe optimal node is: %02d\n", rootNode.childNodes.indexOf(winnerNode) + 1);

        return winnerNode;
    }

    public void addChildNodes(Node node, int childCount) {
        for (int i = 0; i < childCount; i++) {
            node.childNodes.add(new Node(node, !node.isPlayersTurn));
        }
    }

    /**
     * Uses UCT to find a promising child node to be explored.
     *
     * UCT: Upper Confidence bounds applied to Trees.
     *
     * @param rootNode Root node of the tree.
     * @return The most promising node according to UCT.
     */
    public Node getPromisingNode(Node rootNode) {
        Node promisingNode = rootNode;

        // Iterate until a node that hasn't been expanded is found.
        while (promisingNode.childNodes.size() != 0) {
            double uctIndex = Double.MIN_VALUE;
            int nodeIndex = 0;

            // Iterate through child nodes and pick the most promising one
            // using UCT (Upper Confidence bounds applied to Trees).
            for (int i = 0; i < promisingNode.childNodes.size(); i++) {
                Node childNode = promisingNode.childNodes.get(i);
                double uctTemp;

                // If child node has never been visited
                // it will have the highest uct value.
                if (childNode.visitCount == 0) {
                    nodeIndex = i;
                    break;
                }

                uctTemp = ((double) childNode.score / childNode.visitCount)
                        + 1.41 * Math.sqrt(Math.log(promisingNode.visitCount) / (double) childNode.visitCount);

                if (uctTemp > uctIndex) {
                    uctIndex = uctTemp;
                    nodeIndex = i;
                }
            }

            promisingNode = promisingNode.childNodes.get(nodeIndex);
        }

        return promisingNode;
    }

    /**
     * Simulates a random play from a nodes current state and back propagates
     * the result.
     *
     * @param promisingNode Node that will be simulated.
     */
    public void simulateRandomPlay(Node promisingNode) {
        Random rand = new Random();
        Node tempNode = promisingNode;
        boolean isPlayerWinner;

        // The following line randomly determines whether the simulated play is a win or loss.
        // To use the MCTS algorithm correctly this should be a simulation of the nodes' current
        // state of the game until it finishes (if possible) and use an evaluation function to
        // determine how good or bad the play was.
        // e.g. Play tic tac toe choosing random squares until the game ends. 
        promisingNode.playerWon = (rand.nextInt(6) == 0);

        isPlayerWinner = promisingNode.playerWon;

        // Back propagation of the random play.
        while (tempNode != null) {
            tempNode.visitCount++;

            // Add wining scores to bouth player and opponent depending on the turn.
            if ((tempNode.isPlayersTurn && isPlayerWinner)
                    || (!tempNode.isPlayersTurn && !isPlayerWinner)) {
                tempNode.score += WIN_SCORE;
            }

            tempNode = tempNode.parent;
        }
    }

    public Node getWinnerNode(Node rootNode) {
        return Collections.max(rootNode.childNodes, Comparator.comparing(c -> c.score));
    }

    public void printScores(Node rootNode) {
        System.out.println("N.\tScore\t\tVisits");

        for (int i = 0; i < rootNode.childNodes.size(); i++) {
            System.out.println(String.format("%02d\t%d\t\t%d", i + 1,
                    rootNode.childNodes.get(i).score, rootNode.childNodes.get(i).visitCount));
        }
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.