Nthprime

// Generate the nth prime number.
// Algorithm is inspired by the the optimized version of the Sieve of Eratosthenes.
pub fn nthprime(nth: u64) -> u64 {
    let mut total_prime: u64 = 0;
    let mut size_factor: u64 = 2;

    let mut s: u64 = nth * size_factor;
    let mut primes: Vec<u64> = Vec::new();

    let n: u64 = nth;

    while total_prime < n {
        primes = get_primes(s).to_vec();

        total_prime = primes[2..].iter().sum();
        size_factor += 1;
        s = n * size_factor;
    }

    count_prime(primes, n).unwrap()
}

fn get_primes(s: u64) -> Vec<u64> {
    let mut v: Vec<u64> = vec![1; s as usize];

    for index in 2..s {
        if v[index as usize] == 1 {
            for j in index..s {
                if index * j < s {
                    v[(index * j) as usize] = 0;
                } else {
                    break;
                }
            }
        }
    }
    v
}

fn count_prime(primes: Vec<u64>, n: u64) -> Option<u64> {
    let mut counter: u64 = 0;
    for i in 2..primes.len() {
        counter += primes.get(i).unwrap();
        if counter == n {
            return Some(i as u64);
        }
    }
    None
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn my_test() {
        assert_eq!(nthprime(100), 541u64);
    }
}
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.