Polymonial Regression

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split

# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures

# Importing the dataset
dataset = pd.read_csv(
    "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
    "position_salaries.csv"
)
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values


X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)


poly_reg = PolynomialFeatures(degree=4)
X_poly = poly_reg.fit_transform(X)
pol_reg = LinearRegression()
pol_reg.fit(X_poly, y)


# Visualizing the Polymonial Regression results
def viz_polymonial():
    plt.scatter(X, y, color="red")
    plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue")
    plt.title("Truth or Bluff (Linear Regression)")
    plt.xlabel("Position level")
    plt.ylabel("Salary")
    plt.show()
    return


if __name__ == "__main__":
    viz_polymonial()

    # Predicting a new result with Polymonial Regression
    pol_reg.predict(poly_reg.fit_transform([[5.5]]))
    # output should be 132148.43750003
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.