Radix 2 Fft

"""
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
"""

import mpmath  # for roots of unity
import numpy as np


class FFT:
    """
    Fast Polynomial Multiplication using radix-2 fast Fourier Transform.

    Reference:
    https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case

    For polynomials of degree m and n the algorithms has complexity
    O(n*logn + m*logm)

    The main part of the algorithm is split in two parts:
        1) __DFT: We compute the discrete fourier transform (DFT) of A and B using a
        bottom-up dynamic approach -
        2) __multiply: Once we obtain the DFT of A*B, we can similarly
        invert it to obtain A*B

    The class FFT takes two polynomials A and B with complex coefficients as arguments;
    The two polynomials should be represented as a sequence of coefficients starting
    from the free term. Thus, for instance x + 2*x^3 could be represented as
    [0,1,0,2] or (0,1,0,2). The constructor adds some zeros at the end so that the
    polynomials have the same length which is a power of 2 at least the length of
    their product.

    Example:

    Create two polynomials as sequences
    >>> A = [0, 1, 0, 2]  # x+2x^3
    >>> B = (2, 3, 4, 0)  # 2+3x+4x^2

    Create an FFT object with them
    >>> x = FFT(A, B)

    Print product
    >>> print(x.product)  # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
    [(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)]

    __str__ test
    >>> print(x)
    A = 0*x^0 + 1*x^1 + 2*x^0 + 3*x^2
    B = 0*x^2 + 1*x^3 + 2*x^4
    A*B = 0*x^(-0+0j) + 1*x^(2+0j) + 2*x^(3+0j) + 3*x^(8+0j) + 4*x^(6+0j) + 5*x^(8+0j)
    """

    def __init__(self, polyA=None, polyB=None):
        # Input as list
        self.polyA = list(polyA or [0])[:]
        self.polyB = list(polyB or [0])[:]

        # Remove leading zero coefficients
        while self.polyA[-1] == 0:
            self.polyA.pop()
        self.len_A = len(self.polyA)

        while self.polyB[-1] == 0:
            self.polyB.pop()
        self.len_B = len(self.polyB)

        # Add 0 to make lengths equal a power of 2
        self.C_max_length = int(
            2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1))
        )

        while len(self.polyA) < self.C_max_length:
            self.polyA.append(0)
        while len(self.polyB) < self.C_max_length:
            self.polyB.append(0)
        # A complex root used for the fourier transform
        self.root = complex(mpmath.root(x=1, n=self.C_max_length, k=1))

        # The product
        self.product = self.__multiply()

    # Discrete fourier transform of A and B
    def __DFT(self, which):
        if which == "A":
            dft = [[x] for x in self.polyA]
        else:
            dft = [[x] for x in self.polyB]
        # Corner case
        if len(dft) <= 1:
            return dft[0]
        #
        next_ncol = self.C_max_length // 2
        while next_ncol > 0:
            new_dft = [[] for i in range(next_ncol)]
            root = self.root**next_ncol

            # First half of next step
            current_root = 1
            for j in range(self.C_max_length // (next_ncol * 2)):
                for i in range(next_ncol):
                    new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
                current_root *= root
            # Second half of next step
            current_root = 1
            for j in range(self.C_max_length // (next_ncol * 2)):
                for i in range(next_ncol):
                    new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
                current_root *= root
            # Update
            dft = new_dft
            next_ncol = next_ncol // 2
        return dft[0]

    # multiply the DFTs of  A and B and find A*B
    def __multiply(self):
        dftA = self.__DFT("A")
        dftB = self.__DFT("B")
        inverseC = [[dftA[i] * dftB[i] for i in range(self.C_max_length)]]
        del dftA
        del dftB

        # Corner Case
        if len(inverseC[0]) <= 1:
            return inverseC[0]
        # Inverse DFT
        next_ncol = 2
        while next_ncol <= self.C_max_length:
            new_inverseC = [[] for i in range(next_ncol)]
            root = self.root ** (next_ncol // 2)
            current_root = 1
            # First half of next step
            for j in range(self.C_max_length // next_ncol):
                for i in range(next_ncol // 2):
                    # Even positions
                    new_inverseC[i].append(
                        (
                            inverseC[i][j]
                            + inverseC[i][j + self.C_max_length // next_ncol]
                        )
                        / 2
                    )
                    # Odd positions
                    new_inverseC[i + next_ncol // 2].append(
                        (
                            inverseC[i][j]
                            - inverseC[i][j + self.C_max_length // next_ncol]
                        )
                        / (2 * current_root)
                    )
                current_root *= root
            # Update
            inverseC = new_inverseC
            next_ncol *= 2
        # Unpack
        inverseC = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverseC]

        # Remove leading 0's
        while inverseC[-1] == 0:
            inverseC.pop()
        return inverseC

    # Overwrite __str__ for print(); Shows A, B and A*B
    def __str__(self):
        A = "A = " + " + ".join(
            f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A])
        )
        B = "B = " + " + ".join(
            f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B])
        )
        C = "A*B = " + " + ".join(
            f"{coef}*x^{i}" for coef, i in enumerate(self.product)
        )

        return "\n".join((A, B, C))


# Unit tests
if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.