Random Normal Distribution Quicksort

from random import randint
from tempfile import TemporaryFile

import numpy as np


def _inPlaceQuickSort(A, start, end):
    count = 0
    if start < end:
        pivot = randint(start, end)
        temp = A[end]
        A[end] = A[pivot]
        A[pivot] = temp

        p, count = _inPlacePartition(A, start, end)
        count += _inPlaceQuickSort(A, start, p - 1)
        count += _inPlaceQuickSort(A, p + 1, end)
    return count


def _inPlacePartition(A, start, end):

    count = 0
    pivot = randint(start, end)
    temp = A[end]
    A[end] = A[pivot]
    A[pivot] = temp
    newPivotIndex = start - 1
    for index in range(start, end):

        count += 1
        if A[index] < A[end]:  # check if current val is less than pivot value
            newPivotIndex = newPivotIndex + 1
            temp = A[newPivotIndex]
            A[newPivotIndex] = A[index]
            A[index] = temp

    temp = A[newPivotIndex + 1]
    A[newPivotIndex + 1] = A[end]
    A[end] = temp
    return newPivotIndex + 1, count


outfile = TemporaryFile()
p = 100  # 1000 elements are to be sorted


mu, sigma = 0, 1  # mean and standard deviation
X = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)


outfile.seek(0)  # using the same array
M = np.load(outfile)
r = len(M) - 1
z = _inPlaceQuickSort(M, 0, r)

print(
    "No of Comparisons for 100 elements selected from a standard normal distribution"
    "is :"
)
print(z)
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.