Runge Kutta

import numpy as np


def runge_kutta(f, y0, x0, h, x_end):
    """
    Calculate the numeric solution at each step to the ODE f(x, y) using RK4

    https://en.wikipedia.org/wiki/Runge-Kutta_methods

    Arguments:
    f -- The ode as a function of x and y
    y0 -- the initial value for y
    x0 -- the initial value for x
    h -- the stepsize
    x_end -- the end value for x

    >>> # the exact solution is math.exp(x)
    >>> def f(x, y):
    ...     return y
    >>> y0 = 1
    >>> y = runge_kutta(f, y0, 0.0, 0.01, 5)
    >>> y[-1]
    148.41315904125113
    """
    N = int(np.ceil((x_end - x0) / h))
    y = np.zeros((N + 1,))
    y[0] = y0
    x = x0

    for k in range(N):
        k1 = f(x, y[k])
        k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1)
        k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2)
        k4 = f(x + h, y[k] + h * k3)
        y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4)
        x += h

    return y


if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.