Scoring Functions

import numpy as np

""" Here I implemented the scoring functions.
    MAE, MSE, RMSE, RMSLE are included.

    Those are used for calculating differences between
    predicted values and actual values.

    Metrics are slightly differentiated. Sometimes squared, rooted,
    even log is used.

    Using log and roots can be perceived as tools for penalizing big
    errors. However, using appropriate metrics depends on the situations,
    and types of data
"""


# Mean Absolute Error
def mae(predict, actual):
    """
    Examples(rounded for precision):
    >>> actual = [1,2,3];predict = [1,4,3]
    >>> np.around(mae(predict,actual),decimals = 2)
    0.67

    >>> actual = [1,1,1];predict = [1,1,1]
    >>> mae(predict,actual)
    0.0
    """
    predict = np.array(predict)
    actual = np.array(actual)

    difference = abs(predict - actual)
    score = difference.mean()

    return score


# Mean Squared Error
def mse(predict, actual):
    """
    Examples(rounded for precision):
    >>> actual = [1,2,3];predict = [1,4,3]
    >>> np.around(mse(predict,actual),decimals = 2)
    1.33

    >>> actual = [1,1,1];predict = [1,1,1]
    >>> mse(predict,actual)
    0.0
    """
    predict = np.array(predict)
    actual = np.array(actual)

    difference = predict - actual
    square_diff = np.square(difference)

    score = square_diff.mean()
    return score


# Root Mean Squared Error
def rmse(predict, actual):
    """
    Examples(rounded for precision):
    >>> actual = [1,2,3];predict = [1,4,3]
    >>> np.around(rmse(predict,actual),decimals = 2)
    1.15

    >>> actual = [1,1,1];predict = [1,1,1]
    >>> rmse(predict,actual)
    0.0
    """
    predict = np.array(predict)
    actual = np.array(actual)

    difference = predict - actual
    square_diff = np.square(difference)
    mean_square_diff = square_diff.mean()
    score = np.sqrt(mean_square_diff)
    return score


# Root Mean Square Logarithmic Error
def rmsle(predict, actual):
    """
    Examples(rounded for precision):
    >>> actual = [10,10,30];predict = [10,2,30]
    >>> np.around(rmsle(predict,actual),decimals = 2)
    0.75

    >>> actual = [1,1,1];predict = [1,1,1]
    >>> rmsle(predict,actual)
    0.0
    """
    predict = np.array(predict)
    actual = np.array(actual)

    log_predict = np.log(predict + 1)
    log_actual = np.log(actual + 1)

    difference = log_predict - log_actual
    square_diff = np.square(difference)
    mean_square_diff = square_diff.mean()

    score = np.sqrt(mean_square_diff)

    return score


# Mean Bias Deviation
def mbd(predict, actual):
    """
    This value is Negative, if the model underpredicts,
    positive, if it overpredicts.

    Example(rounded for precision):

    Here the model overpredicts
    >>> actual = [1,2,3];predict = [2,3,4]
    >>> np.around(mbd(predict,actual),decimals = 2)
    50.0

    Here the model underpredicts
    >>> actual = [1,2,3];predict = [0,1,1]
    >>> np.around(mbd(predict,actual),decimals = 2)
    -66.67
    """
    predict = np.array(predict)
    actual = np.array(actual)

    difference = predict - actual
    numerator = np.sum(difference) / len(predict)
    denumerator = np.sum(actual) / len(predict)
    # print(numerator, denumerator)
    score = float(numerator) / denumerator * 100

    return score


def manual_accuracy(predict, actual):
    return np.mean(np.array(actual) == np.array(predict))
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.