Similarity Search

"""
Similarity Search : https://en.wikipedia.org/wiki/Similarity_search
Similarity search is a search algorithm for finding the nearest vector from
vectors, used in natural language processing.
In this algorithm, it calculates distance with euclidean distance and
returns a list containing two data for each vector:
    1. the nearest vector
    2. distance between the vector and the nearest vector (float)
"""
from __future__ import annotations

import math

import numpy as np


def euclidean(input_a: np.ndarray, input_b: np.ndarray) -> float:
    """
    Calculates euclidean distance between two data.
    :param input_a: ndarray of first vector.
    :param input_b: ndarray of second vector.
    :return: Euclidean distance of input_a and input_b. By using math.sqrt(),
             result will be float.

    >>> euclidean(np.array([0]), np.array([1]))
    1.0
    >>> euclidean(np.array([0, 1]), np.array([1, 1]))
    1.0
    >>> euclidean(np.array([0, 0, 0]), np.array([0, 0, 1]))
    1.0
    """
    return math.sqrt(sum(pow(a - b, 2) for a, b in zip(input_a, input_b)))


def similarity_search(
    dataset: np.ndarray, value_array: np.ndarray
) -> list[list[list[float] | float]]:
    """
    :param dataset: Set containing the vectors. Should be ndarray.
    :param value_array: vector/vectors we want to know the nearest vector from dataset.
    :return: Result will be a list containing
            1. the nearest vector
            2. distance from the vector

    >>> dataset = np.array([[0], [1], [2]])
    >>> value_array = np.array([[0]])
    >>> similarity_search(dataset, value_array)
    [[[0], 0.0]]

    >>> dataset = np.array([[0, 0], [1, 1], [2, 2]])
    >>> value_array = np.array([[0, 1]])
    >>> similarity_search(dataset, value_array)
    [[[0, 0], 1.0]]

    >>> dataset = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
    >>> value_array = np.array([[0, 0, 1]])
    >>> similarity_search(dataset, value_array)
    [[[0, 0, 0], 1.0]]

    >>> dataset = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
    >>> value_array = np.array([[0, 0, 0], [0, 0, 1]])
    >>> similarity_search(dataset, value_array)
    [[[0, 0, 0], 0.0], [[0, 0, 0], 1.0]]

    These are the errors that might occur:

    1. If dimensions are different.
    For example, dataset has 2d array and value_array has 1d array:
    >>> dataset = np.array([[1]])
    >>> value_array = np.array([1])
    >>> similarity_search(dataset, value_array)
    Traceback (most recent call last):
    ...
    ValueError: Wrong input data's dimensions... dataset : 2, value_array : 1

    2. If data's shapes are different.
    For example, dataset has shape of (3, 2) and value_array has (2, 3).
    We are expecting same shapes of two arrays, so it is wrong.
    >>> dataset = np.array([[0, 0], [1, 1], [2, 2]])
    >>> value_array = np.array([[0, 0, 0], [0, 0, 1]])
    >>> similarity_search(dataset, value_array)
    Traceback (most recent call last):
    ...
    ValueError: Wrong input data's shape... dataset : 2, value_array : 3

    3. If data types are different.
    When trying to compare, we are expecting same types so they should be same.
    If not, it'll come up with errors.
    >>> dataset = np.array([[0, 0], [1, 1], [2, 2]], dtype=np.float32)
    >>> value_array = np.array([[0, 0], [0, 1]], dtype=np.int32)
    >>> similarity_search(dataset, value_array)  # doctest: +NORMALIZE_WHITESPACE
    Traceback (most recent call last):
    ...
    TypeError: Input data have different datatype...
    dataset : float32, value_array : int32
    """

    if dataset.ndim != value_array.ndim:
        raise ValueError(
            f"Wrong input data's dimensions... dataset : {dataset.ndim}, "
            f"value_array : {value_array.ndim}"
        )

    try:
        if dataset.shape[1] != value_array.shape[1]:
            raise ValueError(
                f"Wrong input data's shape... dataset : {dataset.shape[1]}, "
                f"value_array : {value_array.shape[1]}"
            )
    except IndexError:
        if dataset.ndim != value_array.ndim:
            raise TypeError("Wrong shape")

    if dataset.dtype != value_array.dtype:
        raise TypeError(
            f"Input data have different datatype... dataset : {dataset.dtype}, "
            f"value_array : {value_array.dtype}"
        )

    answer = []

    for value in value_array:
        dist = euclidean(value, dataset[0])
        vector = dataset[0].tolist()

        for dataset_value in dataset[1:]:
            temp_dist = euclidean(value, dataset_value)

            if dist > temp_dist:
                dist = temp_dist
                vector = dataset_value.tolist()

        answer.append([vector, dist])

    return answer


if __name__ == "__main__":
    import doctest

    doctest.testmod()
Algerlogo

Β© Alger 2022

About us

We are a group of programmers helping each other build new things, whether it be writing complex encryption programs, or simple ciphers. Our goal is to work together to document and model beautiful, helpful and interesting algorithms using code. We are an open-source community - anyone can contribute. We check each other's work, communicate and collaborate to solve problems. We strive to be welcoming, respectful, yet make sure that our code follows the latest programming guidelines.